MicroRNA-134-5p Regulates Media Degeneration through Inhibiting VSMC Phenotypic Switch and Migration in Thoracic Aortic Dissection

Abnormal phenotypic switch, migration, and proliferation of vascular smooth muscle cells (VSMCs) are hallmarks for pathogenesis of thoracic aortic dissection (TAD). In the current study, we identified miR-134-5p as a critical regulator controlling human VSMC phenotypic switch and migration to invest...

Full description

Bibliographic Details
Main Authors: Ying Wang, Chang-Qing Dong, Guang-Yin Peng, Hao-yue Huang, Yun-sheng Yu, Zhen-Chun Ji, Zhen-Ya Shen
Format: Article
Language:English
Published: Elsevier 2019-06-01
Series:Molecular Therapy: Nucleic Acids
Online Access:http://www.sciencedirect.com/science/article/pii/S2162253119300526
Description
Summary:Abnormal phenotypic switch, migration, and proliferation of vascular smooth muscle cells (VSMCs) are hallmarks for pathogenesis of thoracic aortic dissection (TAD). In the current study, we identified miR-134-5p as a critical regulator controlling human VSMC phenotypic switch and migration to investigate whether miR-134-5p affects human VSMC functions and development of TAD. Using miRNA microarray of aorta specimens from 12 TAD and 12 controls, we identified miR-134-5p, which was significantly downregulated in TAD tissues. With qPCR detection, we found that miR-134-5p was also evidently decreased in human AoSMCs. Ectopic expression of miR-134-5p obviously promoted VSMC differentiation and expression of contractile markers, such as α-SMA, SM22α, and MYH11. miR-134-5p potently inhibited PDGF-BB-induced VSMC phenotypic switch and migration. We further identified STAT5B and ITGB1 as downstream targets of miR-134-5p in human VSMCs and proved them to be mediators in VSMC phenotypic switch and progression of TAD. Finally, Ad-miR-134-5p obviously suppressed the aorta dilatation and vascular media degeneration by 39% in TAD mice after vascular injury induced by Ang II. Our findings revealed that miR-134-5p was a novel regulator in vascular remodeling and pathological progress of TAD via targeting STAT5B/ITGB1 expression. Targeting miR-134-5p or its downstream molecules in VSMCs might develop new avenues in clinical treatment of TAD. Keywords: miR-134-5p, media degeneration, VSMC, phenotypic switch, thoracic aortic dissection
ISSN:2162-2531