Quantitative analysis of cells encapsulated in a scaffold

One of the urgent problems arising while carrying out research in the field of scaffold technology is achieving an objective, direct, quantitative analysis of cells cultivated within a scaffold; one which allows characterization of the density distribution of the cells, their viability and their pro...

Full description

Bibliographic Details
Main Authors: Marfa N. Egorikhina, Diana Ya Aleynik, Yulia P. Rubtsova, Irina N. Charykova
Format: Article
Language:English
Published: Elsevier 2020-01-01
Series:MethodsX
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2215016120303666
Description
Summary:One of the urgent problems arising while carrying out research in the field of scaffold technology is achieving an objective, direct, quantitative analysis of cells cultivated within a scaffold; one which allows characterization of the density distribution of the cells, their viability and their proliferative activity when encapsulated within the scaffold. This problem is associated with the peculiarities of cell cultivation in the three-dimensional structure of scaffolds, including limitations imposed on the possibility of direct cell counting using light microscopy. Also, most scaffolds are opaque, so this generally excludes methods of quantitative analysis using light microscopy. There are methods for the quantitative analysis of cells in a scaffold based on the assessment of their metabolic activity (for example: MTT test). However, these methods are indirect and can result in significant errors. This is due to differences in the metabolic activity of the cells, for example, in different phases of mitosis. Methods based on direct counting of the number of cells isolated from the scaffold are also characterized by a high degree of error that is associated with the loss of cells during the destruction of the scaffold. We describe in detail a method that allows the direct quantitation of cells within a scaffold. Modifications of the method make it possible both to analyze the proliferative activity of cells cultivated in a scaffold and to assess their viability and density distribution in the three-dimensional structure. • Direct rather than indirect analysis of the number of cells in the scaffold by counting the number of nuclei. • Carrying out research without destroying the scaffold structure. • Carrying out research without additional preliminary preparation of samples before staining.
ISSN:2215-0161