N-glycosylation in Haloferax volcanii: Adjusting the sweetness

Long believed to be restricted to Eukarya, it is now known that cells of all three domains of life perform N-glycosylation, the covalent attachment of glycans to select target protein asparagine residues. Still, it is only in the last decade that pathways of N-glycosylation in Archaea have been deli...

Full description

Bibliographic Details
Main Authors: Jerry eEichler, Adi eArbiv, Chen eCohen-Rosenzweig, Lina eKaminski, Lina eKandiba, Zvia eKonrad
Format: Article
Language:English
Published: Frontiers Media S.A. 2013-12-01
Series:Frontiers in Microbiology
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fmicb.2013.00403/full
Description
Summary:Long believed to be restricted to Eukarya, it is now known that cells of all three domains of life perform N-glycosylation, the covalent attachment of glycans to select target protein asparagine residues. Still, it is only in the last decade that pathways of N-glycosylation in Archaea have been delineated. In the haloarchaeon Haloferax volcanii, a series of Agl (archaeal glycosylation) proteins is responsible for the addition of an N-linked pentasaccharide to modified proteins, including the surface (S)-layer glycoprotein, the sole component of the surface layer surrounding the cell. The S-layer glycoprotein N-linked glycosylation profile changes, however, as a function of surrounding salinity. Upon growth at different salt concentrations, the S-layer glycoprotein is either decorated by the N-linked pentasaccharide introduced above or by both this pentasaccharide as well as a tetrasaccharide of distinct composition. Recent efforts have identified Agl5-Agl15 as components of a second Hfx. volcanii N-glycosylation pathway responsible for generating the tetrasaccharide attached to S-layer glycoprotein when growth occurs in 1.75 M but not 3.4 M NaCl-containing medium.
ISSN:1664-302X