The Influence of Network Structural Preference on Link Prediction

Link prediction in complex networks predicts the possibility of link generation between two nodes that have not been linked yet in the network, based on known network structure and attributes. It can be applied in various fields, such as friend recommendation in social networks and prediction of pro...

Full description

Bibliographic Details
Main Authors: Yongcheng Wang, Yu Wang, Xinye Lin, Wei Wang
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2020/6148273
Description
Summary:Link prediction in complex networks predicts the possibility of link generation between two nodes that have not been linked yet in the network, based on known network structure and attributes. It can be applied in various fields, such as friend recommendation in social networks and prediction of protein-protein interaction in biology. However, in the social network, link prediction may raise concerns about privacy and security, because, through link prediction algorithms, criminals can predict the friends of an account user and may even further discover private information such as the address and bank accounts. Therefore, it is urgent to develop a strategy to prevent being identified by link prediction algorithms and protect privacy, utilizing perturbation on network structure at a low cost, including changing and adding edges. This article mainly focuses on the influence of network structural preference perturbation through deletion on link prediction. According to a large number of experiments on the various real networks, edges between large-small degree nodes and medium-medium degree nodes have the most significant impact on the quality of link prediction.
ISSN:1026-0226
1607-887X