A framework for nonlinear thermal radiation and homogeneous-heterogeneous reactions flow based on silver-water and copper-water nanoparticles: A numerical model for probable error

An attempt is accomplished to study nonlinear radiation and chemical reactive magnetohydrodynamic (MHD) flow of nanofluid. Nanofluid comprises water and copper (Cu) and silver (Ag) as nanoparticles. Effect of porous medium is also taken into account. Characteristics of heat and mass transfers are di...

Full description

Bibliographic Details
Main Authors: Sumaira Qayyum, Muhammad Ijaz Khan, Tasawar Hayat, Ahmed Alsaedi
Format: Article
Language:English
Published: Elsevier 2017-01-01
Series:Results in Physics
Online Access:http://www.sciencedirect.com/science/article/pii/S2211379717307714
Description
Summary:An attempt is accomplished to study nonlinear radiation and chemical reactive magnetohydrodynamic (MHD) flow of nanofluid. Nanofluid comprises water and copper (Cu) and silver (Ag) as nanoparticles. Effect of porous medium is also taken into account. Characteristics of heat and mass transfers are discussed via homogeneous-heterogeneous reactions. Correlation behavior of surface drag force and heat transfer rate is discussed. Probable error and statistical declaration for drag force and heat transfer rate are computed. Ordinary differential systems have been considered. Solutions of the problem are presented via a numerical technique namely Euler’s Explicit Method (EEM). The key roles of different embedded parameters on different characteristics of fluid are discussed graphically. The outcomes of the given problem demonstrate that non-linear radiation has noteworthy effect on both temperature and heat transfer coefficient. Keywords: Porous medium, Silver-water and carbon-water nanoparticles, Homogeneous-heterogeneous reaction, Non-linear thermal radiation
ISSN:2211-3797