The growth of Weierstrass canonical products of genus zero with random zeros

Let $zeta=(zeta_n)$ be a complex sequence of genus zero, $au$ be its exponent ofconvergence, $N(r)$ be its integrated counting function,$pi(z)=prodigl(1-frac{z}{zeta_n}igr)$ be the Weierstrass canonical product, and$M(r)$ be the maximum modulus of this product. Then, as is known, the Wahlund-Valiron...

Full description

Bibliographic Details
Main Authors: Yu. V. Zakharko, P. V. Filevych
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2013-06-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:http://journals.pu.if.ua/index.php/cmp/article/view/160/126