The growth of Weierstrass canonical products of genus zero with random zeros
Let $zeta=(zeta_n)$ be a complex sequence of genus zero, $au$ be its exponent ofconvergence, $N(r)$ be its integrated counting function,$pi(z)=prodigl(1-frac{z}{zeta_n}igr)$ be the Weierstrass canonical product, and$M(r)$ be the maximum modulus of this product. Then, as is known, the Wahlund-Valiron...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2013-06-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Subjects: | |
Online Access: | http://journals.pu.if.ua/index.php/cmp/article/view/160/126 |