Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition
The development of colorectal cancer (CRC) is a multistep process initiated by a benign polyp that has the potential to evolve into in situ carcinoma through the interactions between environmental and genetic factors. CRC incidence rates are constantly increased for young adult patients presenting a...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | BioMed Research International |
Online Access: | http://dx.doi.org/10.1155/2020/1726309 |
id |
doaj-892d1fb3f2a64190a7001cc8b8832959 |
---|---|
record_format |
Article |
spelling |
doaj-892d1fb3f2a64190a7001cc8b88329592020-11-25T02:40:35ZengHindawi LimitedBioMed Research International2314-61332314-61412020-01-01202010.1155/2020/17263091726309Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and PredispositionGitana Maria Aceto0Teresa Catalano1Maria Cristina Curia2Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, ItalyDepartment of Clinical and Experimental Medicine, University of Messina, 98125 Messina, ItalyDepartment of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, ItalyThe development of colorectal cancer (CRC) is a multistep process initiated by a benign polyp that has the potential to evolve into in situ carcinoma through the interactions between environmental and genetic factors. CRC incidence rates are constantly increased for young adult patients presenting an advanced tumor stage. The majority of CRCs arise from colonic adenomas originating from aberrant cell proliferation of colon epithelium. Endoscopic polypectomy represents a tool for early detection and removal of polyps, although the occurrence of cancers after negative colonoscopy shows a significant incidence. It has long been recognized that the aberrant regulation of Wingless/It (Wnt)/β-Catenin signaling in the pathogenesis of colorectal cancer is supported by its critical role in the differentiation of stem cells in intestinal crypts and in the maintenance of intestinal homeostasis. For this review, we will focus on the development of adenomatous polyps through the interplay between renewal signaling in the colon epithelium and reactive oxygen species (ROS) production. The current knowledge of molecular pathology allows us to deepen the relationships between oxidative stress and other risk factors as lifestyle, microbiota, and predisposition. We underline that the chronic inflammation and ROS production in the colon epithelium can impair the Wnt/β-catenin and/or base excision repair (BER) pathways and predispose to polyp development. In fact, the coexistence of oxidative DNA damage and errors in DNA polymerase can foster C>T transitions in various types of cancer and adenomas, leading to a hypermutated phenotype of tumor cells. Moreover, the function of Adenomatous Polyposis Coli (APC) protein in regulating DNA repair is very important as therapeutic implication making DNA damaging chemotherapeutic agents more effective in CRC cells that tend to accumulate mutations. Additional studies will determine whether approaches based on Wnt inhibition would provide long-term therapeutic value in CRC, but it is clear that APC disruption plays a central role in driving and maintaining tumorigenesis.http://dx.doi.org/10.1155/2020/1726309 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gitana Maria Aceto Teresa Catalano Maria Cristina Curia |
spellingShingle |
Gitana Maria Aceto Teresa Catalano Maria Cristina Curia Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition BioMed Research International |
author_facet |
Gitana Maria Aceto Teresa Catalano Maria Cristina Curia |
author_sort |
Gitana Maria Aceto |
title |
Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition |
title_short |
Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition |
title_full |
Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition |
title_fullStr |
Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition |
title_full_unstemmed |
Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition |
title_sort |
molecular aspects of colorectal adenomas: the interplay among microenvironment, oxidative stress, and predisposition |
publisher |
Hindawi Limited |
series |
BioMed Research International |
issn |
2314-6133 2314-6141 |
publishDate |
2020-01-01 |
description |
The development of colorectal cancer (CRC) is a multistep process initiated by a benign polyp that has the potential to evolve into in situ carcinoma through the interactions between environmental and genetic factors. CRC incidence rates are constantly increased for young adult patients presenting an advanced tumor stage. The majority of CRCs arise from colonic adenomas originating from aberrant cell proliferation of colon epithelium. Endoscopic polypectomy represents a tool for early detection and removal of polyps, although the occurrence of cancers after negative colonoscopy shows a significant incidence. It has long been recognized that the aberrant regulation of Wingless/It (Wnt)/β-Catenin signaling in the pathogenesis of colorectal cancer is supported by its critical role in the differentiation of stem cells in intestinal crypts and in the maintenance of intestinal homeostasis. For this review, we will focus on the development of adenomatous polyps through the interplay between renewal signaling in the colon epithelium and reactive oxygen species (ROS) production. The current knowledge of molecular pathology allows us to deepen the relationships between oxidative stress and other risk factors as lifestyle, microbiota, and predisposition. We underline that the chronic inflammation and ROS production in the colon epithelium can impair the Wnt/β-catenin and/or base excision repair (BER) pathways and predispose to polyp development. In fact, the coexistence of oxidative DNA damage and errors in DNA polymerase can foster C>T transitions in various types of cancer and adenomas, leading to a hypermutated phenotype of tumor cells. Moreover, the function of Adenomatous Polyposis Coli (APC) protein in regulating DNA repair is very important as therapeutic implication making DNA damaging chemotherapeutic agents more effective in CRC cells that tend to accumulate mutations. Additional studies will determine whether approaches based on Wnt inhibition would provide long-term therapeutic value in CRC, but it is clear that APC disruption plays a central role in driving and maintaining tumorigenesis. |
url |
http://dx.doi.org/10.1155/2020/1726309 |
work_keys_str_mv |
AT gitanamariaaceto molecularaspectsofcolorectaladenomastheinterplayamongmicroenvironmentoxidativestressandpredisposition AT teresacatalano molecularaspectsofcolorectaladenomastheinterplayamongmicroenvironmentoxidativestressandpredisposition AT mariacristinacuria molecularaspectsofcolorectaladenomastheinterplayamongmicroenvironmentoxidativestressandpredisposition |
_version_ |
1715417359396634624 |