Turbulent Kinetic Energy Production in the Vane of a Low-Pressure Linear Turbine Cascade with Incoming Wakes

Incompressible large eddy simulation and direct numerical simulation of a low-pressure turbine at Re=5.18×104 and 1.48×105 with discrete incoming wakes are analyzed to identify the turbulent kinetic energy generation mechanism outside of the blade boundary layer. The results highlight the growth of...

Full description

Bibliographic Details
Main Authors: V. Michelassi, J. G. Wissink
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:International Journal of Rotating Machinery
Online Access:http://dx.doi.org/10.1155/2015/650783
Description
Summary:Incompressible large eddy simulation and direct numerical simulation of a low-pressure turbine at Re=5.18×104 and 1.48×105 with discrete incoming wakes are analyzed to identify the turbulent kinetic energy generation mechanism outside of the blade boundary layer. The results highlight the growth of turbulent kinetic energy at the bow apex of the wake and correlate it to the stress-strain tensors relative orientation. The production rate is analytically split according to the principal axes, and then terms are computed by using the simulation results. The analysis of the turbulent kinetic energy is followed both along the discrete incoming wakes and in the stationary frame of reference. Both direct numerical and large eddy simulation concur in identifying the same production mechanism that is driven by both a growth of strain rate in the wake, first, followed by the growth of turbulent shear stress after. The peak of turbulent kinetic energy diffuses and can eventually reach the suction side boundary layer for the largest Reynolds number investigated here with higher incidence angle. As a consequence, the local turbulence intensity outside the boundary layer can grow significantly above the free-stream level with a potential impact on the suction side boundary layer transition mechanism.
ISSN:1023-621X
1542-3034