Kinetics of bulge bases in small RNAs and the effect of pressure on it.

Due to their self-catalytic properties, small RNAs with bulge bases are hypothesized to be primordial molecules which could form elementary translation systems. Using molecular dynamics simulations, we study the binding propensity of small RNAs by calculating the free energy barrier corresponding to...

Full description

Bibliographic Details
Main Authors: Pradeep Kumar, Jean Lehmann, Albert Libchaber
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3423399?pdf=render
Description
Summary:Due to their self-catalytic properties, small RNAs with bulge bases are hypothesized to be primordial molecules which could form elementary translation systems. Using molecular dynamics simulations, we study the binding propensity of small RNAs by calculating the free energy barrier corresponding to the looped out conformations of bulge bases, which presumably act as the binding sites for ligands in these small RNAs. We find that base flipping kinetics can proceed at atmospheric pressure but with a very small propensity. Furthermore, the free energy barrier associated with base flipping depends on the stacking with neighboring bases. Next, we studied the base flipping kinetics with pressure. We find that the free energy associated with base looping out increases monotonically as the pressure is increased. Furthermore, we calculate the mean first-passage time of conformational looping out of the bulge base using the diffusion of reaction coordinate associated with the base flipping on the underlying free energy surface. We find that the mean first-passage time associated with bulge looping out increases slowly upon increasing pressures P up to 2000 atm but changes dramatically for P>2000 atm. Finally, we discuss our results in the light of the role of hydration shell of water around RNA. Our results are relevant for the RNA world hypothesis.
ISSN:1932-6203