The atypical calpains: evolutionary analyses and roles in Caenorhabditis elegans cellular degeneration.
The calpains are physiologically important Ca(2+)-activated regulatory proteases, which are divided into typical or atypical sub-families based on constituent domains. Both sub-families are present in mammals, but our understanding of calpain function is based primarily on typical sub-family members...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2012-01-01
|
Series: | PLoS Genetics |
Online Access: | http://europepmc.org/articles/PMC3315469?pdf=render |
id |
doaj-891524b397894eafa61d5702d0333b2f |
---|---|
record_format |
Article |
spelling |
doaj-891524b397894eafa61d5702d0333b2f2020-11-24T21:41:37ZengPublic Library of Science (PLoS)PLoS Genetics1553-73901553-74042012-01-0183e100260210.1371/journal.pgen.1002602The atypical calpains: evolutionary analyses and roles in Caenorhabditis elegans cellular degeneration.Peter I JoyceRahul SatijaMaozi ChenPatricia E KuwabaraThe calpains are physiologically important Ca(2+)-activated regulatory proteases, which are divided into typical or atypical sub-families based on constituent domains. Both sub-families are present in mammals, but our understanding of calpain function is based primarily on typical sub-family members. Here, we take advantage of the model organism Caenorhabditis elegans, which expresses only atypical calpains, to extend our knowledge of the phylogenetic evolution and function of calpains. We provide evidence that a typical human calpain protein with a penta EF hand, detected using custom profile hidden Markov models, is conserved in ancient metazoans and a divergent clade. These analyses also provide evidence for the lineage-specific loss of typical calpain genes in C. elegans and Ciona, and they reveal that many calpain-like genes lack an intact catalytic triad. Given the association between the dysregulation of typical calpains and human degenerative pathologies, we explored the phenotypes, expression profiles, and consequences of inappropriate reduction or activation of C. elegans atypical calpains. These studies show that the atypical calpain gene, clp-1, contributes to muscle degeneration and reveal that clp-1 activity is sensitive to genetic manipulation of [Ca(2+)](i). We show that CLP-1 localizes to sarcomeric sub-structures, but is excluded from dense bodies (Z-disks). We find that the muscle degeneration observed in a C. elegans model of dystrophin-based muscular dystrophy can be suppressed by clp-1 inactivation and that nemadipine-A inhibition of the EGL-19 calcium channel reveals that Ca(2+) dysfunction underlies the C. elegans MyoD model of myopathy. Taken together, our analyses highlight the roles of calcium dysregulation and CLP-1 in muscle myopathies and suggest that the atypical calpains could retain conserved roles in myofilament turnover.http://europepmc.org/articles/PMC3315469?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Peter I Joyce Rahul Satija Maozi Chen Patricia E Kuwabara |
spellingShingle |
Peter I Joyce Rahul Satija Maozi Chen Patricia E Kuwabara The atypical calpains: evolutionary analyses and roles in Caenorhabditis elegans cellular degeneration. PLoS Genetics |
author_facet |
Peter I Joyce Rahul Satija Maozi Chen Patricia E Kuwabara |
author_sort |
Peter I Joyce |
title |
The atypical calpains: evolutionary analyses and roles in Caenorhabditis elegans cellular degeneration. |
title_short |
The atypical calpains: evolutionary analyses and roles in Caenorhabditis elegans cellular degeneration. |
title_full |
The atypical calpains: evolutionary analyses and roles in Caenorhabditis elegans cellular degeneration. |
title_fullStr |
The atypical calpains: evolutionary analyses and roles in Caenorhabditis elegans cellular degeneration. |
title_full_unstemmed |
The atypical calpains: evolutionary analyses and roles in Caenorhabditis elegans cellular degeneration. |
title_sort |
atypical calpains: evolutionary analyses and roles in caenorhabditis elegans cellular degeneration. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS Genetics |
issn |
1553-7390 1553-7404 |
publishDate |
2012-01-01 |
description |
The calpains are physiologically important Ca(2+)-activated regulatory proteases, which are divided into typical or atypical sub-families based on constituent domains. Both sub-families are present in mammals, but our understanding of calpain function is based primarily on typical sub-family members. Here, we take advantage of the model organism Caenorhabditis elegans, which expresses only atypical calpains, to extend our knowledge of the phylogenetic evolution and function of calpains. We provide evidence that a typical human calpain protein with a penta EF hand, detected using custom profile hidden Markov models, is conserved in ancient metazoans and a divergent clade. These analyses also provide evidence for the lineage-specific loss of typical calpain genes in C. elegans and Ciona, and they reveal that many calpain-like genes lack an intact catalytic triad. Given the association between the dysregulation of typical calpains and human degenerative pathologies, we explored the phenotypes, expression profiles, and consequences of inappropriate reduction or activation of C. elegans atypical calpains. These studies show that the atypical calpain gene, clp-1, contributes to muscle degeneration and reveal that clp-1 activity is sensitive to genetic manipulation of [Ca(2+)](i). We show that CLP-1 localizes to sarcomeric sub-structures, but is excluded from dense bodies (Z-disks). We find that the muscle degeneration observed in a C. elegans model of dystrophin-based muscular dystrophy can be suppressed by clp-1 inactivation and that nemadipine-A inhibition of the EGL-19 calcium channel reveals that Ca(2+) dysfunction underlies the C. elegans MyoD model of myopathy. Taken together, our analyses highlight the roles of calcium dysregulation and CLP-1 in muscle myopathies and suggest that the atypical calpains could retain conserved roles in myofilament turnover. |
url |
http://europepmc.org/articles/PMC3315469?pdf=render |
work_keys_str_mv |
AT peterijoyce theatypicalcalpainsevolutionaryanalysesandrolesincaenorhabditiseleganscellulardegeneration AT rahulsatija theatypicalcalpainsevolutionaryanalysesandrolesincaenorhabditiseleganscellulardegeneration AT maozichen theatypicalcalpainsevolutionaryanalysesandrolesincaenorhabditiseleganscellulardegeneration AT patriciaekuwabara theatypicalcalpainsevolutionaryanalysesandrolesincaenorhabditiseleganscellulardegeneration AT peterijoyce atypicalcalpainsevolutionaryanalysesandrolesincaenorhabditiseleganscellulardegeneration AT rahulsatija atypicalcalpainsevolutionaryanalysesandrolesincaenorhabditiseleganscellulardegeneration AT maozichen atypicalcalpainsevolutionaryanalysesandrolesincaenorhabditiseleganscellulardegeneration AT patriciaekuwabara atypicalcalpainsevolutionaryanalysesandrolesincaenorhabditiseleganscellulardegeneration |
_version_ |
1725921078231957504 |