Event-Driven Coulomb Counting for Effective Online Approximation of Li-ion Battery State of Charge

Lithium-ion batteries are deployed in a range of modern applications. Their utilization is evolving with the aim of achieving a greener environment. Batteries are costly, and battery management systems (BMSs) ensure long life and proper battery utilization. Modern BMSs are complex and cause a notabl...

Full description

Bibliographic Details
Main Author: Saeed Mian Qaisar
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/21/5600
Description
Summary:Lithium-ion batteries are deployed in a range of modern applications. Their utilization is evolving with the aim of achieving a greener environment. Batteries are costly, and battery management systems (BMSs) ensure long life and proper battery utilization. Modern BMSs are complex and cause a notable overhead consumption on batteries. In this paper, the time-varying aspect of battery parameters is used to reduce the power consumption overhead of BMSs. The aim is to use event-driven processing to realize effective BMSs. Unlike the conventional approach, parameters of battery cells, such as voltages and currents, are no longer regularly measured at a predefined time step and are instead recorded on the basis of events. This renders a considerable real-time compression. An inventive event-driven coulomb counting method is then presented, which employs the irregularly sampled data information for an effective online state of charge (SOC) determination. A high energy battery model for electric vehicle (EV) applications is studied in this work. It is implemented by using the equivalent circuit modeling (ECM) approach. A comparison of the developed framework is made with conventional fixed-rate counterparts. The results show that, in terms of compression and computational complexities, the devised solution surpasses the second order of magnitude gain. The SOC estimation error is also quantified, and the system attains a ≤4% SOC estimation error bound.
ISSN:1996-1073