Experimental and Numerical Investigations into the Failure Mechanisms of TRIP700 Steel Sheets

The formability and failure behavior of transformation-induced plasticity (TRIP) steel blanks were investigated through various stress states. The forming limit diagram (FLD) at fracture was constructed both experimentally and numerically. Numerical studies were performed to evaluate the applicabili...

Full description

Bibliographic Details
Main Authors: Niloufar Habibi, Veera Sundararaghavan, Ulrich Prahl, Ali Ramazani
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/8/12/1073
Description
Summary:The formability and failure behavior of transformation-induced plasticity (TRIP) steel blanks were investigated through various stress states. The forming limit diagram (FLD) at fracture was constructed both experimentally and numerically. Numerical studies were performed to evaluate the applicability of different damage criteria in predicting the FLD as well as complex cross-die deep drawing process. The fracture surface and numerical results reveal that the material failed in a different mode for different strain path. Therefore, the Tresca model, which is based on shear stress, accurately predicted the conditions where shear had a profound effect on the damage initiation, whereas Situ localized necking criterion could calculate the conditions in which localization was dominant.
ISSN:2075-4701