Toward nanofluids of ultra-high thermal conductivity
<p>Abstract</p> <p>The assessment of proposed origins for thermal conductivity enhancement in nanofluids signifies the importance of particle morphology and coupled transport in determining nanofluid heat conduction and thermal conductivity. The success of developing nanofluids of...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2011-01-01
|
Series: | Nanoscale Research Letters |
Online Access: | http://www.nanoscalereslett.com/content/6/1/153 |
id |
doaj-8909e71eac8c4f52a3f33453e3be7126 |
---|---|
record_format |
Article |
spelling |
doaj-8909e71eac8c4f52a3f33453e3be71262020-11-24T21:51:16ZengSpringerOpenNanoscale Research Letters1931-75731556-276X2011-01-0161153Toward nanofluids of ultra-high thermal conductivityWang LiqiuFan Jing<p>Abstract</p> <p>The assessment of proposed origins for thermal conductivity enhancement in nanofluids signifies the importance of particle morphology and coupled transport in determining nanofluid heat conduction and thermal conductivity. The success of developing nanofluids of superior conductivity depends thus very much on our understanding and manipulation of the morphology and the coupled transport. Nanofluids with conductivity of upper Hashin-Shtrikman (H-S) bound can be obtained by manipulating particles into an interconnected configuration that disperses the base fluid and thus significantly enhancing the particle-fluid interfacial energy transport. Nanofluids with conductivity higher than the upper H-S bound could also be developed by manipulating the coupled transport among various transport processes, and thus the nature of heat conduction in nanofluids. While the direct contributions of ordered liquid layer and particle Brownian motion to the nanofluid conductivity are negligible, their indirect effects can be significant via their influence on the particle morphology and/or the coupled transport.</p> http://www.nanoscalereslett.com/content/6/1/153 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Wang Liqiu Fan Jing |
spellingShingle |
Wang Liqiu Fan Jing Toward nanofluids of ultra-high thermal conductivity Nanoscale Research Letters |
author_facet |
Wang Liqiu Fan Jing |
author_sort |
Wang Liqiu |
title |
Toward nanofluids of ultra-high thermal conductivity |
title_short |
Toward nanofluids of ultra-high thermal conductivity |
title_full |
Toward nanofluids of ultra-high thermal conductivity |
title_fullStr |
Toward nanofluids of ultra-high thermal conductivity |
title_full_unstemmed |
Toward nanofluids of ultra-high thermal conductivity |
title_sort |
toward nanofluids of ultra-high thermal conductivity |
publisher |
SpringerOpen |
series |
Nanoscale Research Letters |
issn |
1931-7573 1556-276X |
publishDate |
2011-01-01 |
description |
<p>Abstract</p> <p>The assessment of proposed origins for thermal conductivity enhancement in nanofluids signifies the importance of particle morphology and coupled transport in determining nanofluid heat conduction and thermal conductivity. The success of developing nanofluids of superior conductivity depends thus very much on our understanding and manipulation of the morphology and the coupled transport. Nanofluids with conductivity of upper Hashin-Shtrikman (H-S) bound can be obtained by manipulating particles into an interconnected configuration that disperses the base fluid and thus significantly enhancing the particle-fluid interfacial energy transport. Nanofluids with conductivity higher than the upper H-S bound could also be developed by manipulating the coupled transport among various transport processes, and thus the nature of heat conduction in nanofluids. While the direct contributions of ordered liquid layer and particle Brownian motion to the nanofluid conductivity are negligible, their indirect effects can be significant via their influence on the particle morphology and/or the coupled transport.</p> |
url |
http://www.nanoscalereslett.com/content/6/1/153 |
work_keys_str_mv |
AT wangliqiu towardnanofluidsofultrahighthermalconductivity AT fanjing towardnanofluidsofultrahighthermalconductivity |
_version_ |
1725879536262840320 |