On locally divided integral domains and CPI-overrings
It is proved that an integral domain R is locally divided if and only if each CPI-extension of ℬ (in the sense of Boisen and Sheldon) is R-flat (equivalently, if and only if each CPI-extension of R is a localization of R). Thus, each CPI-extension of a locally divided domain is also locally divided....
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
1981-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171281000082 |
Summary: | It is proved that an integral domain R is locally divided if and only if each CPI-extension of ℬ (in the sense of Boisen and Sheldon) is R-flat (equivalently, if and only if each CPI-extension of R is a localization of R). Thus, each CPI-extension of a locally divided domain is also locally divided. Treed domains are characterized by the going-down behavior of their CPI-extensions. A new class of (not necessarily treed) domains, called CPI-closed domains, is introduced. Examples include locally divided domains, quasilocal domains of Krull dimension 2, and qusilocal domains with the QQR-property. The property of being CPI-closed behaves nicely with respect to the D+M construction, but is not a local property. |
---|---|
ISSN: | 0161-1712 1687-0425 |