Chlamydia trachomatis inclusion membrane protein MrcA interacts with the inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) to regulate extrusion formation.
Chlamydia trachomatis is an obligate intracellular bacterium that replicates within a vacuole termed an inclusion. At the end of their intracellular developmental cycle, chlamydiae are released either by lysis of the host cell or extrusion of the intact inclusion. The inclusion membrane is extensive...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2018-03-01
|
Series: | PLoS Pathogens |
Online Access: | http://europepmc.org/articles/PMC5854415?pdf=render |
Summary: | Chlamydia trachomatis is an obligate intracellular bacterium that replicates within a vacuole termed an inclusion. At the end of their intracellular developmental cycle, chlamydiae are released either by lysis of the host cell or extrusion of the intact inclusion. The inclusion membrane is extensively modified by the insertion of type III secreted inclusion membrane proteins, Incs, which contribute to inclusion membrane structure and facilitate host-pathogen interactions. An interaction was identified between the inclusion membrane protein, MrcA, and the Ca2+ channel inositol-1,4,5-trisphosphate receptor, type 3 (ITPR3). ITPR3 was recruited and localized to active Src-family-kinase rich microdomains on the inclusion membrane as was the Ca2+ sensor, STIM1. Disruption of MrcA by directed mutagenesis resulted in loss of ITPR3 recruitment and simultaneous reduction of chlamydial release by extrusion. Complementation of MrcA restored ITPR3 recruitment and extrusion. Inhibition of extrusion was also observed following siRNA depletion of host ITPR3 or STIM1. Chlamydial extrusion was also inhibited by the calcium chelator BAPTA-AM. Each of these treatments resulted in a concomitant reduction in phosphorylation of the myosin regulatory light chain (MLC2) and a loss of myosin motor activity at the end of the developmental cycle which is consistent with the reduced extrusion formation. These studies suggest that Ca2+ signaling pathways play an important role in regulation of release mechanisms by C. trachomatis. |
---|---|
ISSN: | 1553-7366 1553-7374 |