Thermopower Enhancement from Engineering the Na0.7CoO2 Interacting Fermiology via Fe Doping

The sodium cobaltate system NaxCoO2 is a prominent representant of strongly correlated materials with promising thermoelectric response. In a combined theoretical and experimental study we show that, by doping the Co site of the compound at x=0.7 with iron, a further increase of the Seebeck coeffici...

Full description

Bibliographic Details
Main Authors: Raphael Richter, Denitsa Shopova, Wenjie Xie, Anke Weidenkaff, Frank Lechermann
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Advances in Condensed Matter Physics
Online Access:http://dx.doi.org/10.1155/2018/9725321
id doaj-88be40f8bcf14cdcb55fd0b43f46467c
record_format Article
spelling doaj-88be40f8bcf14cdcb55fd0b43f46467c2020-11-24T21:00:04ZengHindawi LimitedAdvances in Condensed Matter Physics1687-81081687-81242018-01-01201810.1155/2018/97253219725321Thermopower Enhancement from Engineering the Na0.7CoO2 Interacting Fermiology via Fe DopingRaphael Richter0Denitsa Shopova1Wenjie Xie2Anke Weidenkaff3Frank Lechermann4Institut für Technische Thermodynamik, Deutsches Zentrum für Luft- und Raumfahrt, 70569 Stuttgart, GermanyChemische Materialsynthese, Institut für Materialwissenschaft, Universität Stuttgart, 70569 Stuttgart, GermanyChemische Materialsynthese, Institut für Materialwissenschaft, Universität Stuttgart, 70569 Stuttgart, GermanyChemische Materialsynthese, Institut für Materialwissenschaft, Universität Stuttgart, 70569 Stuttgart, GermanyI. Institut für Theoretische Physik, Universität Hamburg, 20355 Hamburg, GermanyThe sodium cobaltate system NaxCoO2 is a prominent representant of strongly correlated materials with promising thermoelectric response. In a combined theoretical and experimental study we show that, by doping the Co site of the compound at x=0.7 with iron, a further increase of the Seebeck coefficient is achieved. The Fe defects give rise to effective hole doping in the high-thermopower region of larger sodium content x. Originally filled hole pockets in the angular-resolved spectral function of the material shift to low energy when introducing Fe, leading to a multisheet interacting Fermi surface. Because of the higher sensitivity of correlated materials to doping, introducing adequate substitutional defects is thus a promising route to manipulate their thermopower.http://dx.doi.org/10.1155/2018/9725321
collection DOAJ
language English
format Article
sources DOAJ
author Raphael Richter
Denitsa Shopova
Wenjie Xie
Anke Weidenkaff
Frank Lechermann
spellingShingle Raphael Richter
Denitsa Shopova
Wenjie Xie
Anke Weidenkaff
Frank Lechermann
Thermopower Enhancement from Engineering the Na0.7CoO2 Interacting Fermiology via Fe Doping
Advances in Condensed Matter Physics
author_facet Raphael Richter
Denitsa Shopova
Wenjie Xie
Anke Weidenkaff
Frank Lechermann
author_sort Raphael Richter
title Thermopower Enhancement from Engineering the Na0.7CoO2 Interacting Fermiology via Fe Doping
title_short Thermopower Enhancement from Engineering the Na0.7CoO2 Interacting Fermiology via Fe Doping
title_full Thermopower Enhancement from Engineering the Na0.7CoO2 Interacting Fermiology via Fe Doping
title_fullStr Thermopower Enhancement from Engineering the Na0.7CoO2 Interacting Fermiology via Fe Doping
title_full_unstemmed Thermopower Enhancement from Engineering the Na0.7CoO2 Interacting Fermiology via Fe Doping
title_sort thermopower enhancement from engineering the na0.7coo2 interacting fermiology via fe doping
publisher Hindawi Limited
series Advances in Condensed Matter Physics
issn 1687-8108
1687-8124
publishDate 2018-01-01
description The sodium cobaltate system NaxCoO2 is a prominent representant of strongly correlated materials with promising thermoelectric response. In a combined theoretical and experimental study we show that, by doping the Co site of the compound at x=0.7 with iron, a further increase of the Seebeck coefficient is achieved. The Fe defects give rise to effective hole doping in the high-thermopower region of larger sodium content x. Originally filled hole pockets in the angular-resolved spectral function of the material shift to low energy when introducing Fe, leading to a multisheet interacting Fermi surface. Because of the higher sensitivity of correlated materials to doping, introducing adequate substitutional defects is thus a promising route to manipulate their thermopower.
url http://dx.doi.org/10.1155/2018/9725321
work_keys_str_mv AT raphaelrichter thermopowerenhancementfromengineeringthena07coo2interactingfermiologyviafedoping
AT denitsashopova thermopowerenhancementfromengineeringthena07coo2interactingfermiologyviafedoping
AT wenjiexie thermopowerenhancementfromengineeringthena07coo2interactingfermiologyviafedoping
AT ankeweidenkaff thermopowerenhancementfromengineeringthena07coo2interactingfermiologyviafedoping
AT franklechermann thermopowerenhancementfromengineeringthena07coo2interactingfermiologyviafedoping
_version_ 1716780458123984896