Summary: | Abstract CCL5/RANTES, a chemoattractant for myeloid cells, is induced by hepatic ischemia/reperfusion injury (IRI). The roles of CCL5 in hepatic IRI were carried out by means of CCL5 immunodepletion, antagonistic competition by Met-CCL5, and treatment with recombinant murine CCL5 (rmCCL5). Depletion or inhibition of CCL5 reduced severity of hepatic IRI, whereas rmCCL5 treatment aggravated liver IRI as manifested in elevated serum alanine aminotransferase (ALT) and tissue myeloperoxidase (MPO) levels. Moreover, IRI severity was reduced in CCL5-knockout (CCL5-KO) mice versus wildtype (WT) mice, with drops in serum ALT level, intrahepatic MPO activity, and histological pathology. Bone marrow transplantion (BMT) studies show that myeloid cells and tissue cells are both required for CCL5-aggravated hepatic IRI. The profile of liver-infiltrating leukocyte subsets after hepatic reperfusion identified CD11b+ cells as the only compartment significantly reduced in CCL5-KO mice versus WT controls at early reperfusion phase. The role of CCL5 recruiting CD11b+ cells in early reperfusion was validated by in vitro transwell migration assay of murine primary macrophages (broadly characterized by their CD11b expression) in response to liver lysates after early reperfusion. Taken together, our results demonstrate a sequence of early events elicited by CCL5 chemoattracting macrophage that result in inflammatory aggravation of hepatic IRI.
|