IP3 receptor type 2 deficiency is associated with a secretory defect in the pancreatic acinar cell and an accumulation of zymogen granules.
Acute pancreatitis is a painful, life-threatening disorder of the pancreas whose etiology is often multi-factorial. It is of great importance to understand the interplay between factors that predispose patients to develop the disease. One such factor is an excessive elevation in pancreatic acinar ce...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2012-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3504040?pdf=render |
id |
doaj-889a475c5cc141099dabea9b3f1a094c |
---|---|
record_format |
Article |
spelling |
doaj-889a475c5cc141099dabea9b3f1a094c2020-11-25T01:59:00ZengPublic Library of Science (PLoS)PLoS ONE1932-62032012-01-01711e4846510.1371/journal.pone.0048465IP3 receptor type 2 deficiency is associated with a secretory defect in the pancreatic acinar cell and an accumulation of zymogen granules.Abrahim I OrabiYuhuan LuoMahwish U AhmadAhsan U ShahZahir MannanDong WangSheharyar SarwarKamaldeen A MuiliChristine ShugrueThomas R KolodecikVijay P SinghMark E LoweEdwin ThrowerJu ChenSohail Z HusainAcute pancreatitis is a painful, life-threatening disorder of the pancreas whose etiology is often multi-factorial. It is of great importance to understand the interplay between factors that predispose patients to develop the disease. One such factor is an excessive elevation in pancreatic acinar cell Ca(2+). These aberrant Ca(2+) elevations are triggered by release of Ca(2+) from apical Ca(2+) pools that are gated by the inositol 1,4,5-trisphosphate receptor (IP3R) types 2 and 3. In this study, we examined the role of IP3R type 2 (IP3R2) using mice deficient in this Ca(2+) release channel (IP3R2(-/-)). Using live acinar cell Ca(2+) imaging we found that loss of IP3R2 reduced the amplitude of the apical Ca(2+) signal and caused a delay in its initiation. This was associated with a reduction in carbachol-stimulated amylase release and an accumulation of zymogen granules (ZGs). Specifically, there was a 2-fold increase in the number of ZGs (P<0.05) and an expansion of the ZG pool area within the cell. There was also a 1.6- and 2.6-fold increase in cellular amylase and trypsinogen, respectively. However, the mice did not have evidence of pancreatic injury at baseline, other than an elevated serum amylase level. Further, pancreatitis outcomes using a mild caerulein hyperstimulation model were similar between IP3R2(-/-) and wild type mice. In summary, IP3R2 modulates apical acinar cell Ca(2+) signals and pancreatic enzyme secretion. IP3R-deficient acinar cells accumulate ZGs, but the mice do not succumb to pancreatic damage or worse pancreatitis outcomes.http://europepmc.org/articles/PMC3504040?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Abrahim I Orabi Yuhuan Luo Mahwish U Ahmad Ahsan U Shah Zahir Mannan Dong Wang Sheharyar Sarwar Kamaldeen A Muili Christine Shugrue Thomas R Kolodecik Vijay P Singh Mark E Lowe Edwin Thrower Ju Chen Sohail Z Husain |
spellingShingle |
Abrahim I Orabi Yuhuan Luo Mahwish U Ahmad Ahsan U Shah Zahir Mannan Dong Wang Sheharyar Sarwar Kamaldeen A Muili Christine Shugrue Thomas R Kolodecik Vijay P Singh Mark E Lowe Edwin Thrower Ju Chen Sohail Z Husain IP3 receptor type 2 deficiency is associated with a secretory defect in the pancreatic acinar cell and an accumulation of zymogen granules. PLoS ONE |
author_facet |
Abrahim I Orabi Yuhuan Luo Mahwish U Ahmad Ahsan U Shah Zahir Mannan Dong Wang Sheharyar Sarwar Kamaldeen A Muili Christine Shugrue Thomas R Kolodecik Vijay P Singh Mark E Lowe Edwin Thrower Ju Chen Sohail Z Husain |
author_sort |
Abrahim I Orabi |
title |
IP3 receptor type 2 deficiency is associated with a secretory defect in the pancreatic acinar cell and an accumulation of zymogen granules. |
title_short |
IP3 receptor type 2 deficiency is associated with a secretory defect in the pancreatic acinar cell and an accumulation of zymogen granules. |
title_full |
IP3 receptor type 2 deficiency is associated with a secretory defect in the pancreatic acinar cell and an accumulation of zymogen granules. |
title_fullStr |
IP3 receptor type 2 deficiency is associated with a secretory defect in the pancreatic acinar cell and an accumulation of zymogen granules. |
title_full_unstemmed |
IP3 receptor type 2 deficiency is associated with a secretory defect in the pancreatic acinar cell and an accumulation of zymogen granules. |
title_sort |
ip3 receptor type 2 deficiency is associated with a secretory defect in the pancreatic acinar cell and an accumulation of zymogen granules. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2012-01-01 |
description |
Acute pancreatitis is a painful, life-threatening disorder of the pancreas whose etiology is often multi-factorial. It is of great importance to understand the interplay between factors that predispose patients to develop the disease. One such factor is an excessive elevation in pancreatic acinar cell Ca(2+). These aberrant Ca(2+) elevations are triggered by release of Ca(2+) from apical Ca(2+) pools that are gated by the inositol 1,4,5-trisphosphate receptor (IP3R) types 2 and 3. In this study, we examined the role of IP3R type 2 (IP3R2) using mice deficient in this Ca(2+) release channel (IP3R2(-/-)). Using live acinar cell Ca(2+) imaging we found that loss of IP3R2 reduced the amplitude of the apical Ca(2+) signal and caused a delay in its initiation. This was associated with a reduction in carbachol-stimulated amylase release and an accumulation of zymogen granules (ZGs). Specifically, there was a 2-fold increase in the number of ZGs (P<0.05) and an expansion of the ZG pool area within the cell. There was also a 1.6- and 2.6-fold increase in cellular amylase and trypsinogen, respectively. However, the mice did not have evidence of pancreatic injury at baseline, other than an elevated serum amylase level. Further, pancreatitis outcomes using a mild caerulein hyperstimulation model were similar between IP3R2(-/-) and wild type mice. In summary, IP3R2 modulates apical acinar cell Ca(2+) signals and pancreatic enzyme secretion. IP3R-deficient acinar cells accumulate ZGs, but the mice do not succumb to pancreatic damage or worse pancreatitis outcomes. |
url |
http://europepmc.org/articles/PMC3504040?pdf=render |
work_keys_str_mv |
AT abrahimiorabi ip3receptortype2deficiencyisassociatedwithasecretorydefectinthepancreaticacinarcellandanaccumulationofzymogengranules AT yuhuanluo ip3receptortype2deficiencyisassociatedwithasecretorydefectinthepancreaticacinarcellandanaccumulationofzymogengranules AT mahwishuahmad ip3receptortype2deficiencyisassociatedwithasecretorydefectinthepancreaticacinarcellandanaccumulationofzymogengranules AT ahsanushah ip3receptortype2deficiencyisassociatedwithasecretorydefectinthepancreaticacinarcellandanaccumulationofzymogengranules AT zahirmannan ip3receptortype2deficiencyisassociatedwithasecretorydefectinthepancreaticacinarcellandanaccumulationofzymogengranules AT dongwang ip3receptortype2deficiencyisassociatedwithasecretorydefectinthepancreaticacinarcellandanaccumulationofzymogengranules AT sheharyarsarwar ip3receptortype2deficiencyisassociatedwithasecretorydefectinthepancreaticacinarcellandanaccumulationofzymogengranules AT kamaldeenamuili ip3receptortype2deficiencyisassociatedwithasecretorydefectinthepancreaticacinarcellandanaccumulationofzymogengranules AT christineshugrue ip3receptortype2deficiencyisassociatedwithasecretorydefectinthepancreaticacinarcellandanaccumulationofzymogengranules AT thomasrkolodecik ip3receptortype2deficiencyisassociatedwithasecretorydefectinthepancreaticacinarcellandanaccumulationofzymogengranules AT vijaypsingh ip3receptortype2deficiencyisassociatedwithasecretorydefectinthepancreaticacinarcellandanaccumulationofzymogengranules AT markelowe ip3receptortype2deficiencyisassociatedwithasecretorydefectinthepancreaticacinarcellandanaccumulationofzymogengranules AT edwinthrower ip3receptortype2deficiencyisassociatedwithasecretorydefectinthepancreaticacinarcellandanaccumulationofzymogengranules AT juchen ip3receptortype2deficiencyisassociatedwithasecretorydefectinthepancreaticacinarcellandanaccumulationofzymogengranules AT sohailzhusain ip3receptortype2deficiencyisassociatedwithasecretorydefectinthepancreaticacinarcellandanaccumulationofzymogengranules |
_version_ |
1724966546325897216 |