Roots of mappings from manifolds
<p/> <p>Assume that <inline-formula><graphic file="1687-1812-2004-643139-i1.gif"/></inline-formula> is a proper map of a connected <inline-formula><graphic file="1687-1812-2004-643139-i2.gif"/></inline-formula>-manifold <inline-f...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2004-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2004/643139 |
id |
doaj-886280c55c4d483eb39950f8ba0371f5 |
---|---|
record_format |
Article |
spelling |
doaj-886280c55c4d483eb39950f8ba0371f52020-11-24T21:09:26ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122004-01-0120044643139Roots of mappings from manifoldsBrooks Robin<p/> <p>Assume that <inline-formula><graphic file="1687-1812-2004-643139-i1.gif"/></inline-formula> is a proper map of a connected <inline-formula><graphic file="1687-1812-2004-643139-i2.gif"/></inline-formula>-manifold <inline-formula><graphic file="1687-1812-2004-643139-i3.gif"/></inline-formula> into a Hausdorff, connected, locally path-connected, and semilocally simply connected space <inline-formula><graphic file="1687-1812-2004-643139-i4.gif"/></inline-formula>, and <inline-formula><graphic file="1687-1812-2004-643139-i5.gif"/></inline-formula> has a neighborhood homeomorphic to Euclidean <inline-formula><graphic file="1687-1812-2004-643139-i6.gif"/></inline-formula>-space. The proper Nielsen number of <inline-formula><graphic file="1687-1812-2004-643139-i7.gif"/></inline-formula> at <inline-formula><graphic file="1687-1812-2004-643139-i8.gif"/></inline-formula> and the absolute degree of <inline-formula><graphic file="1687-1812-2004-643139-i9.gif"/></inline-formula> at <inline-formula><graphic file="1687-1812-2004-643139-i10.gif"/></inline-formula> are defined in this setting. The proper Nielsen number is shown to a lower bound on the number of roots at <inline-formula><graphic file="1687-1812-2004-643139-i11.gif"/></inline-formula> among all maps properly homotopic to <inline-formula><graphic file="1687-1812-2004-643139-i12.gif"/></inline-formula>, and the absolute degree is shown to be a lower bound among maps properly homotopic to <inline-formula><graphic file="1687-1812-2004-643139-i13.gif"/></inline-formula> and transverse to <inline-formula><graphic file="1687-1812-2004-643139-i14.gif"/></inline-formula>. When <inline-formula><graphic file="1687-1812-2004-643139-i15.gif"/></inline-formula>, these bounds are shown to be sharp. An example of a map meeting these conditions is given in which, in contrast to what is true when <inline-formula><graphic file="1687-1812-2004-643139-i16.gif"/></inline-formula> is a manifold, Nielsen root classes of the map have different multiplicities and essentialities, and the root Reidemeister number is strictly greater than the Nielsen root number, even when the latter is nonzero.</p>http://www.fixedpointtheoryandapplications.com/content/2004/643139 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Brooks Robin |
spellingShingle |
Brooks Robin Roots of mappings from manifolds Fixed Point Theory and Applications |
author_facet |
Brooks Robin |
author_sort |
Brooks Robin |
title |
Roots of mappings from manifolds |
title_short |
Roots of mappings from manifolds |
title_full |
Roots of mappings from manifolds |
title_fullStr |
Roots of mappings from manifolds |
title_full_unstemmed |
Roots of mappings from manifolds |
title_sort |
roots of mappings from manifolds |
publisher |
SpringerOpen |
series |
Fixed Point Theory and Applications |
issn |
1687-1820 1687-1812 |
publishDate |
2004-01-01 |
description |
<p/> <p>Assume that <inline-formula><graphic file="1687-1812-2004-643139-i1.gif"/></inline-formula> is a proper map of a connected <inline-formula><graphic file="1687-1812-2004-643139-i2.gif"/></inline-formula>-manifold <inline-formula><graphic file="1687-1812-2004-643139-i3.gif"/></inline-formula> into a Hausdorff, connected, locally path-connected, and semilocally simply connected space <inline-formula><graphic file="1687-1812-2004-643139-i4.gif"/></inline-formula>, and <inline-formula><graphic file="1687-1812-2004-643139-i5.gif"/></inline-formula> has a neighborhood homeomorphic to Euclidean <inline-formula><graphic file="1687-1812-2004-643139-i6.gif"/></inline-formula>-space. The proper Nielsen number of <inline-formula><graphic file="1687-1812-2004-643139-i7.gif"/></inline-formula> at <inline-formula><graphic file="1687-1812-2004-643139-i8.gif"/></inline-formula> and the absolute degree of <inline-formula><graphic file="1687-1812-2004-643139-i9.gif"/></inline-formula> at <inline-formula><graphic file="1687-1812-2004-643139-i10.gif"/></inline-formula> are defined in this setting. The proper Nielsen number is shown to a lower bound on the number of roots at <inline-formula><graphic file="1687-1812-2004-643139-i11.gif"/></inline-formula> among all maps properly homotopic to <inline-formula><graphic file="1687-1812-2004-643139-i12.gif"/></inline-formula>, and the absolute degree is shown to be a lower bound among maps properly homotopic to <inline-formula><graphic file="1687-1812-2004-643139-i13.gif"/></inline-formula> and transverse to <inline-formula><graphic file="1687-1812-2004-643139-i14.gif"/></inline-formula>. When <inline-formula><graphic file="1687-1812-2004-643139-i15.gif"/></inline-formula>, these bounds are shown to be sharp. An example of a map meeting these conditions is given in which, in contrast to what is true when <inline-formula><graphic file="1687-1812-2004-643139-i16.gif"/></inline-formula> is a manifold, Nielsen root classes of the map have different multiplicities and essentialities, and the root Reidemeister number is strictly greater than the Nielsen root number, even when the latter is nonzero.</p> |
url |
http://www.fixedpointtheoryandapplications.com/content/2004/643139 |
work_keys_str_mv |
AT brooksrobin rootsofmappingsfrommanifolds |
_version_ |
1716758350889222144 |