Roots of mappings from manifolds

<p/> <p>Assume that <inline-formula><graphic file="1687-1812-2004-643139-i1.gif"/></inline-formula> is a proper map of a connected <inline-formula><graphic file="1687-1812-2004-643139-i2.gif"/></inline-formula>-manifold <inline-f...

Full description

Bibliographic Details
Main Author: Brooks Robin
Format: Article
Language:English
Published: SpringerOpen 2004-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2004/643139
id doaj-886280c55c4d483eb39950f8ba0371f5
record_format Article
spelling doaj-886280c55c4d483eb39950f8ba0371f52020-11-24T21:09:26ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122004-01-0120044643139Roots of mappings from manifoldsBrooks Robin<p/> <p>Assume that <inline-formula><graphic file="1687-1812-2004-643139-i1.gif"/></inline-formula> is a proper map of a connected <inline-formula><graphic file="1687-1812-2004-643139-i2.gif"/></inline-formula>-manifold <inline-formula><graphic file="1687-1812-2004-643139-i3.gif"/></inline-formula> into a Hausdorff, connected, locally path-connected, and semilocally simply connected space <inline-formula><graphic file="1687-1812-2004-643139-i4.gif"/></inline-formula>, and <inline-formula><graphic file="1687-1812-2004-643139-i5.gif"/></inline-formula> has a neighborhood homeomorphic to Euclidean <inline-formula><graphic file="1687-1812-2004-643139-i6.gif"/></inline-formula>-space. The proper Nielsen number of <inline-formula><graphic file="1687-1812-2004-643139-i7.gif"/></inline-formula> at <inline-formula><graphic file="1687-1812-2004-643139-i8.gif"/></inline-formula> and the absolute degree of <inline-formula><graphic file="1687-1812-2004-643139-i9.gif"/></inline-formula> at <inline-formula><graphic file="1687-1812-2004-643139-i10.gif"/></inline-formula> are defined in this setting. The proper Nielsen number is shown to a lower bound on the number of roots at <inline-formula><graphic file="1687-1812-2004-643139-i11.gif"/></inline-formula> among all maps properly homotopic to <inline-formula><graphic file="1687-1812-2004-643139-i12.gif"/></inline-formula>, and the absolute degree is shown to be a lower bound among maps properly homotopic to <inline-formula><graphic file="1687-1812-2004-643139-i13.gif"/></inline-formula> and transverse to <inline-formula><graphic file="1687-1812-2004-643139-i14.gif"/></inline-formula>. When <inline-formula><graphic file="1687-1812-2004-643139-i15.gif"/></inline-formula>, these bounds are shown to be sharp. An example of a map meeting these conditions is given in which, in contrast to what is true when <inline-formula><graphic file="1687-1812-2004-643139-i16.gif"/></inline-formula> is a manifold, Nielsen root classes of the map have different multiplicities and essentialities, and the root Reidemeister number is strictly greater than the Nielsen root number, even when the latter is nonzero.</p>http://www.fixedpointtheoryandapplications.com/content/2004/643139
collection DOAJ
language English
format Article
sources DOAJ
author Brooks Robin
spellingShingle Brooks Robin
Roots of mappings from manifolds
Fixed Point Theory and Applications
author_facet Brooks Robin
author_sort Brooks Robin
title Roots of mappings from manifolds
title_short Roots of mappings from manifolds
title_full Roots of mappings from manifolds
title_fullStr Roots of mappings from manifolds
title_full_unstemmed Roots of mappings from manifolds
title_sort roots of mappings from manifolds
publisher SpringerOpen
series Fixed Point Theory and Applications
issn 1687-1820
1687-1812
publishDate 2004-01-01
description <p/> <p>Assume that <inline-formula><graphic file="1687-1812-2004-643139-i1.gif"/></inline-formula> is a proper map of a connected <inline-formula><graphic file="1687-1812-2004-643139-i2.gif"/></inline-formula>-manifold <inline-formula><graphic file="1687-1812-2004-643139-i3.gif"/></inline-formula> into a Hausdorff, connected, locally path-connected, and semilocally simply connected space <inline-formula><graphic file="1687-1812-2004-643139-i4.gif"/></inline-formula>, and <inline-formula><graphic file="1687-1812-2004-643139-i5.gif"/></inline-formula> has a neighborhood homeomorphic to Euclidean <inline-formula><graphic file="1687-1812-2004-643139-i6.gif"/></inline-formula>-space. The proper Nielsen number of <inline-formula><graphic file="1687-1812-2004-643139-i7.gif"/></inline-formula> at <inline-formula><graphic file="1687-1812-2004-643139-i8.gif"/></inline-formula> and the absolute degree of <inline-formula><graphic file="1687-1812-2004-643139-i9.gif"/></inline-formula> at <inline-formula><graphic file="1687-1812-2004-643139-i10.gif"/></inline-formula> are defined in this setting. The proper Nielsen number is shown to a lower bound on the number of roots at <inline-formula><graphic file="1687-1812-2004-643139-i11.gif"/></inline-formula> among all maps properly homotopic to <inline-formula><graphic file="1687-1812-2004-643139-i12.gif"/></inline-formula>, and the absolute degree is shown to be a lower bound among maps properly homotopic to <inline-formula><graphic file="1687-1812-2004-643139-i13.gif"/></inline-formula> and transverse to <inline-formula><graphic file="1687-1812-2004-643139-i14.gif"/></inline-formula>. When <inline-formula><graphic file="1687-1812-2004-643139-i15.gif"/></inline-formula>, these bounds are shown to be sharp. An example of a map meeting these conditions is given in which, in contrast to what is true when <inline-formula><graphic file="1687-1812-2004-643139-i16.gif"/></inline-formula> is a manifold, Nielsen root classes of the map have different multiplicities and essentialities, and the root Reidemeister number is strictly greater than the Nielsen root number, even when the latter is nonzero.</p>
url http://www.fixedpointtheoryandapplications.com/content/2004/643139
work_keys_str_mv AT brooksrobin rootsofmappingsfrommanifolds
_version_ 1716758350889222144