Experimental Studies on Surface Vortex Mitigation Using the Floating Anti-Vortex Device in Sump Pumps

The maintenance of the performance of sump pumps is important to mitigate flood damage in urban areas and lowlands. However, the air-entraining vortex in the sump leads to undesirable performance degradation. Thus, in this study, the newly designed floating anti-vortex device (F-AVD) was employed in...

Full description

Bibliographic Details
Main Authors: Inhwan Park, Hyung-Jun Kim, Hoje Seong, Dong Sop Rhee
Format: Article
Language:English
Published: MDPI AG 2018-04-01
Series:Water
Subjects:
Online Access:http://www.mdpi.com/2073-4441/10/4/441
Description
Summary:The maintenance of the performance of sump pumps is important to mitigate flood damage in urban areas and lowlands. However, the air-entraining vortex in the sump leads to undesirable performance degradation. Thus, in this study, the newly designed floating anti-vortex device (F-AVD) was employed in the intake pipe to enhance the efficiency of water intake in the sump by decreasing the surface vortex. The performance of the F-AVD was evaluated from the model experiments, in which the sump model was designed to represent the pump station that operates in Korea. The flow in the sump was measured using the particle image velocimetry (PIV) technique, and the velocity and vorticity distributions were compared both with and without the adoption of the F-AVD. The experimental results indicated that the vortex structures behind the intake pipe were effectively mitigated by installing the F-AVD. The vorticity magnitude behind the intake pipe was reduced in range of 24.8–52.5% after the installation of the F-AVD. However, in the case of a flow rate increase, the efficiency of the F-AVD decreased because of the strong vortex. Thus, an additional anti-vortex device (AVD), which is attached to the backwall or the floor in the sump, is required to prevent the air entrainment in conditions with high flow rates.
ISSN:2073-4441