Dynamic pricing based on a cloud computing framework to support the integration of renewable energy sources

Integration of renewable energy sources into the electric grid in the domestic sector results in bidirectional energy flow from the supply side of the consumer to the grid. Traditional pricing methods are difficult to implement in such a situation of bidirectional energy flow and they face operation...

Full description

Bibliographic Details
Main Authors: Rajeev Thankappan Nair, Ashok Sankar
Format: Article
Language:English
Published: Wiley 2014-12-01
Series:The Journal of Engineering
Subjects:
Online Access:http://digital-library.theiet.org/content/journals/10.1049/joe.2014.0239
Description
Summary:Integration of renewable energy sources into the electric grid in the domestic sector results in bidirectional energy flow from the supply side of the consumer to the grid. Traditional pricing methods are difficult to implement in such a situation of bidirectional energy flow and they face operational challenges on the application of price-based demand side management programme because of the intermittent characteristics of renewable energy sources. In this study, a dynamic pricing method using real-time data based on a cloud computing framework is proposed to address the aforementioned issues. The case study indicates that the dynamic pricing captures the variation of energy flow in the household. The dynamic renewable factor introduced in the model supports consumer oriented pricing. A new method is presented in this study to determine the appropriate level of photovoltaic (PV) penetration in the distribution system based on voltage stability aspect. The load flow study result for the electric grid in Kerala, India, indicates that the overvoltage caused by various PV penetration levels up to 33% is within the voltage limits defined for distribution feeders. The result justifies the selected level of penetration.
ISSN:2051-3305