Dynamics of a Rational Difference Equation

<p/> <p>The main goal of the paper is to investigate boundedness, invariant intervals, semicycles, and global attractivity of all nonnegative solutions of the equation <inline-formula><graphic file="1687-1847-2010-970720-i1.gif"/></inline-formula>, <inline-...

Full description

Bibliographic Details
Main Authors: Li Wan-Tong, Hu Lin-Xia, Jia Xiu-Mei
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Advances in Difference Equations
Online Access:http://www.advancesindifferenceequations.com/content/2010/970720
id doaj-882201d2d0f949f195f23be49ba93ebf
record_format Article
spelling doaj-882201d2d0f949f195f23be49ba93ebf2020-11-25T01:46:54ZengSpringerOpenAdvances in Difference Equations1687-18391687-18472010-01-0120101970720Dynamics of a Rational Difference EquationLi Wan-TongHu Lin-XiaJia Xiu-Mei<p/> <p>The main goal of the paper is to investigate boundedness, invariant intervals, semicycles, and global attractivity of all nonnegative solutions of the equation <inline-formula><graphic file="1687-1847-2010-970720-i1.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-970720-i2.gif"/></inline-formula>, where the parameters <inline-formula><graphic file="1687-1847-2010-970720-i3.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-970720-i4.gif"/></inline-formula> is an integer, and the initial conditions <inline-formula><graphic file="1687-1847-2010-970720-i5.gif"/></inline-formula>. It is shown that the unique positive equilibrium of the equation is globally asymptotically stable under the condition <inline-formula><graphic file="1687-1847-2010-970720-i6.gif"/></inline-formula>. The result partially solves the open problem proposed by Kulenovi&#263; and Ladas in work (2002).</p> http://www.advancesindifferenceequations.com/content/2010/970720
collection DOAJ
language English
format Article
sources DOAJ
author Li Wan-Tong
Hu Lin-Xia
Jia Xiu-Mei
spellingShingle Li Wan-Tong
Hu Lin-Xia
Jia Xiu-Mei
Dynamics of a Rational Difference Equation
Advances in Difference Equations
author_facet Li Wan-Tong
Hu Lin-Xia
Jia Xiu-Mei
author_sort Li Wan-Tong
title Dynamics of a Rational Difference Equation
title_short Dynamics of a Rational Difference Equation
title_full Dynamics of a Rational Difference Equation
title_fullStr Dynamics of a Rational Difference Equation
title_full_unstemmed Dynamics of a Rational Difference Equation
title_sort dynamics of a rational difference equation
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1839
1687-1847
publishDate 2010-01-01
description <p/> <p>The main goal of the paper is to investigate boundedness, invariant intervals, semicycles, and global attractivity of all nonnegative solutions of the equation <inline-formula><graphic file="1687-1847-2010-970720-i1.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-970720-i2.gif"/></inline-formula>, where the parameters <inline-formula><graphic file="1687-1847-2010-970720-i3.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-970720-i4.gif"/></inline-formula> is an integer, and the initial conditions <inline-formula><graphic file="1687-1847-2010-970720-i5.gif"/></inline-formula>. It is shown that the unique positive equilibrium of the equation is globally asymptotically stable under the condition <inline-formula><graphic file="1687-1847-2010-970720-i6.gif"/></inline-formula>. The result partially solves the open problem proposed by Kulenovi&#263; and Ladas in work (2002).</p>
url http://www.advancesindifferenceequations.com/content/2010/970720
work_keys_str_mv AT liwantong dynamicsofarationaldifferenceequation
AT hulinxia dynamicsofarationaldifferenceequation
AT jiaxiumei dynamicsofarationaldifferenceequation
_version_ 1725017320680587264