Dynamics of a Rational Difference Equation
<p/> <p>The main goal of the paper is to investigate boundedness, invariant intervals, semicycles, and global attractivity of all nonnegative solutions of the equation <inline-formula><graphic file="1687-1847-2010-970720-i1.gif"/></inline-formula>, <inline-...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Advances in Difference Equations |
Online Access: | http://www.advancesindifferenceequations.com/content/2010/970720 |
id |
doaj-882201d2d0f949f195f23be49ba93ebf |
---|---|
record_format |
Article |
spelling |
doaj-882201d2d0f949f195f23be49ba93ebf2020-11-25T01:46:54ZengSpringerOpenAdvances in Difference Equations1687-18391687-18472010-01-0120101970720Dynamics of a Rational Difference EquationLi Wan-TongHu Lin-XiaJia Xiu-Mei<p/> <p>The main goal of the paper is to investigate boundedness, invariant intervals, semicycles, and global attractivity of all nonnegative solutions of the equation <inline-formula><graphic file="1687-1847-2010-970720-i1.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-970720-i2.gif"/></inline-formula>, where the parameters <inline-formula><graphic file="1687-1847-2010-970720-i3.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-970720-i4.gif"/></inline-formula> is an integer, and the initial conditions <inline-formula><graphic file="1687-1847-2010-970720-i5.gif"/></inline-formula>. It is shown that the unique positive equilibrium of the equation is globally asymptotically stable under the condition <inline-formula><graphic file="1687-1847-2010-970720-i6.gif"/></inline-formula>. The result partially solves the open problem proposed by Kulenović and Ladas in work (2002).</p> http://www.advancesindifferenceequations.com/content/2010/970720 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Li Wan-Tong Hu Lin-Xia Jia Xiu-Mei |
spellingShingle |
Li Wan-Tong Hu Lin-Xia Jia Xiu-Mei Dynamics of a Rational Difference Equation Advances in Difference Equations |
author_facet |
Li Wan-Tong Hu Lin-Xia Jia Xiu-Mei |
author_sort |
Li Wan-Tong |
title |
Dynamics of a Rational Difference Equation |
title_short |
Dynamics of a Rational Difference Equation |
title_full |
Dynamics of a Rational Difference Equation |
title_fullStr |
Dynamics of a Rational Difference Equation |
title_full_unstemmed |
Dynamics of a Rational Difference Equation |
title_sort |
dynamics of a rational difference equation |
publisher |
SpringerOpen |
series |
Advances in Difference Equations |
issn |
1687-1839 1687-1847 |
publishDate |
2010-01-01 |
description |
<p/> <p>The main goal of the paper is to investigate boundedness, invariant intervals, semicycles, and global attractivity of all nonnegative solutions of the equation <inline-formula><graphic file="1687-1847-2010-970720-i1.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-970720-i2.gif"/></inline-formula>, where the parameters <inline-formula><graphic file="1687-1847-2010-970720-i3.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-970720-i4.gif"/></inline-formula> is an integer, and the initial conditions <inline-formula><graphic file="1687-1847-2010-970720-i5.gif"/></inline-formula>. It is shown that the unique positive equilibrium of the equation is globally asymptotically stable under the condition <inline-formula><graphic file="1687-1847-2010-970720-i6.gif"/></inline-formula>. The result partially solves the open problem proposed by Kulenović and Ladas in work (2002).</p> |
url |
http://www.advancesindifferenceequations.com/content/2010/970720 |
work_keys_str_mv |
AT liwantong dynamicsofarationaldifferenceequation AT hulinxia dynamicsofarationaldifferenceequation AT jiaxiumei dynamicsofarationaldifferenceequation |
_version_ |
1725017320680587264 |