DUDMap: 3D RGB-D mapping for dense, unstructured, and dynamic environment
Simultaneous localization and mapping (SLAM) problem has been extensively studied by researchers in the field of robotics, however, conventional approaches in mapping assume a static environment. The static assumption is valid only in a small region, and it limits the application of visual SLAM in d...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2021-06-01
|
Series: | International Journal of Advanced Robotic Systems |
Online Access: | https://doi.org/10.1177/17298814211016178 |
id |
doaj-880bda796a8749ac85a82e28d9e6e676 |
---|---|
record_format |
Article |
spelling |
doaj-880bda796a8749ac85a82e28d9e6e6762021-06-10T23:33:19ZengSAGE PublishingInternational Journal of Advanced Robotic Systems1729-88142021-06-011810.1177/17298814211016178DUDMap: 3D RGB-D mapping for dense, unstructured, and dynamic environmentÖzgür Hastürk0Aydan M Erkmen1 Advanced Control Technologies Department, ROKETSAN Missile Industries Inc., Ankara, Turkey Electrical and Electronics Engineering Department, Middle East Technical University, Ankara, TurkeySimultaneous localization and mapping (SLAM) problem has been extensively studied by researchers in the field of robotics, however, conventional approaches in mapping assume a static environment. The static assumption is valid only in a small region, and it limits the application of visual SLAM in dynamic environments. The recently proposed state-of-the-art SLAM solutions for dynamic environments use different semantic segmentation methods such as mask R-CNN and SegNet; however, these frameworks are based on a sparse mapping framework (ORBSLAM). In addition, segmentation process increases the computational power, which makes these SLAM algorithms unsuitable for real-time mapping. Therefore, there is no effective dense RGB-D SLAM method for real-world unstructured and dynamic environments. In this study, we propose a novel real-time dense SLAM method for dynamic environments, where 3D reconstruction error is manipulated for identification of static and dynamic classes having generalized Gaussian distribution. Our proposed approach requires neither explicit object tracking nor object classifier, which makes it robust to any type of moving object and suitable for real-time mapping. Our method eliminates the repeated views and uses consistent data that enhance the performance of volumetric fusion. For completeness, we compare our proposed method using different types of high dynamic dataset, which are publicly available, to demonstrate the versatility and robustness of our approach. Experiments show that its tracking performance is better than other dense and dynamic SLAM approaches.https://doi.org/10.1177/17298814211016178 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Özgür Hastürk Aydan M Erkmen |
spellingShingle |
Özgür Hastürk Aydan M Erkmen DUDMap: 3D RGB-D mapping for dense, unstructured, and dynamic environment International Journal of Advanced Robotic Systems |
author_facet |
Özgür Hastürk Aydan M Erkmen |
author_sort |
Özgür Hastürk |
title |
DUDMap: 3D RGB-D mapping for dense, unstructured, and dynamic environment |
title_short |
DUDMap: 3D RGB-D mapping for dense, unstructured, and dynamic environment |
title_full |
DUDMap: 3D RGB-D mapping for dense, unstructured, and dynamic environment |
title_fullStr |
DUDMap: 3D RGB-D mapping for dense, unstructured, and dynamic environment |
title_full_unstemmed |
DUDMap: 3D RGB-D mapping for dense, unstructured, and dynamic environment |
title_sort |
dudmap: 3d rgb-d mapping for dense, unstructured, and dynamic environment |
publisher |
SAGE Publishing |
series |
International Journal of Advanced Robotic Systems |
issn |
1729-8814 |
publishDate |
2021-06-01 |
description |
Simultaneous localization and mapping (SLAM) problem has been extensively studied by researchers in the field of robotics, however, conventional approaches in mapping assume a static environment. The static assumption is valid only in a small region, and it limits the application of visual SLAM in dynamic environments. The recently proposed state-of-the-art SLAM solutions for dynamic environments use different semantic segmentation methods such as mask R-CNN and SegNet; however, these frameworks are based on a sparse mapping framework (ORBSLAM). In addition, segmentation process increases the computational power, which makes these SLAM algorithms unsuitable for real-time mapping. Therefore, there is no effective dense RGB-D SLAM method for real-world unstructured and dynamic environments. In this study, we propose a novel real-time dense SLAM method for dynamic environments, where 3D reconstruction error is manipulated for identification of static and dynamic classes having generalized Gaussian distribution. Our proposed approach requires neither explicit object tracking nor object classifier, which makes it robust to any type of moving object and suitable for real-time mapping. Our method eliminates the repeated views and uses consistent data that enhance the performance of volumetric fusion. For completeness, we compare our proposed method using different types of high dynamic dataset, which are publicly available, to demonstrate the versatility and robustness of our approach. Experiments show that its tracking performance is better than other dense and dynamic SLAM approaches. |
url |
https://doi.org/10.1177/17298814211016178 |
work_keys_str_mv |
AT ozgurhasturk dudmap3drgbdmappingfordenseunstructuredanddynamicenvironment AT aydanmerkmen dudmap3drgbdmappingfordenseunstructuredanddynamicenvironment |
_version_ |
1721384279601053696 |