A Distributional Identity for the Bivariate Brownian Bridge: A Nontensor Gaussian Field
The bivariate Brownian bridge, a nontensor Gaussian Field, is defined by B(t1,t2)=W(t1,t2)W(1,1)=0=W(t1,t2)-t1t2W(1,1), where t1,t2∈I=[0,1] and W(t1,t2) is a Brownian sheet. We obtain a distributional identity, a consequence of the Karhunen-Loève expansion for the bivariate Brownian bridge by Fredho...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2018/9687039 |
id |
doaj-88072f9e78dc49a5a5db4b79f632550c |
---|---|
record_format |
Article |
spelling |
doaj-88072f9e78dc49a5a5db4b79f632550c2020-11-24T22:26:44ZengHindawi LimitedMathematical Problems in Engineering1024-123X1563-51472018-01-01201810.1155/2018/96870399687039A Distributional Identity for the Bivariate Brownian Bridge: A Nontensor Gaussian FieldXiaohui Ai0Mathematics School, Jilin University, Changchun 130012, ChinaThe bivariate Brownian bridge, a nontensor Gaussian Field, is defined by B(t1,t2)=W(t1,t2)W(1,1)=0=W(t1,t2)-t1t2W(1,1), where t1,t2∈I=[0,1] and W(t1,t2) is a Brownian sheet. We obtain a distributional identity, a consequence of the Karhunen-Loève expansion for the bivariate Brownian bridge by Fredholm integral equation and Laplace transform approach.http://dx.doi.org/10.1155/2018/9687039 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xiaohui Ai |
spellingShingle |
Xiaohui Ai A Distributional Identity for the Bivariate Brownian Bridge: A Nontensor Gaussian Field Mathematical Problems in Engineering |
author_facet |
Xiaohui Ai |
author_sort |
Xiaohui Ai |
title |
A Distributional Identity for the Bivariate Brownian Bridge: A Nontensor Gaussian Field |
title_short |
A Distributional Identity for the Bivariate Brownian Bridge: A Nontensor Gaussian Field |
title_full |
A Distributional Identity for the Bivariate Brownian Bridge: A Nontensor Gaussian Field |
title_fullStr |
A Distributional Identity for the Bivariate Brownian Bridge: A Nontensor Gaussian Field |
title_full_unstemmed |
A Distributional Identity for the Bivariate Brownian Bridge: A Nontensor Gaussian Field |
title_sort |
distributional identity for the bivariate brownian bridge: a nontensor gaussian field |
publisher |
Hindawi Limited |
series |
Mathematical Problems in Engineering |
issn |
1024-123X 1563-5147 |
publishDate |
2018-01-01 |
description |
The bivariate Brownian bridge, a nontensor Gaussian Field, is defined by B(t1,t2)=W(t1,t2)W(1,1)=0=W(t1,t2)-t1t2W(1,1), where t1,t2∈I=[0,1] and W(t1,t2) is a Brownian sheet. We obtain a distributional identity, a consequence of the Karhunen-Loève expansion for the bivariate Brownian bridge by Fredholm integral equation and Laplace transform approach. |
url |
http://dx.doi.org/10.1155/2018/9687039 |
work_keys_str_mv |
AT xiaohuiai adistributionalidentityforthebivariatebrownianbridgeanontensorgaussianfield AT xiaohuiai distributionalidentityforthebivariatebrownianbridgeanontensorgaussianfield |
_version_ |
1725751897929809920 |