Controllability of Impulsive Semilinear Stochastic Heat Equation with Delay

LaSalle wrote the following: “it is never possible to start the system exactly in its equilibrium state, and the system is always subject to outside forces not taken into account by the differential equations. The system is disturbed and is displaced slightly from its equilibrium state. What happens...

Full description

Bibliographic Details
Main Authors: Hugo Leiva, Miguel Narvaez, Zoraida Sivoli
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:International Journal of Differential Equations
Online Access:http://dx.doi.org/10.1155/2020/2515160
id doaj-87fd3b9129e8410cac7e387f027e07b2
record_format Article
spelling doaj-87fd3b9129e8410cac7e387f027e07b22020-12-28T01:31:07ZengHindawi LimitedInternational Journal of Differential Equations1687-96512020-01-01202010.1155/2020/2515160Controllability of Impulsive Semilinear Stochastic Heat Equation with DelayHugo Leiva0Miguel Narvaez1Zoraida Sivoli2Yachay TechUniversidad De Los AndesUniversidad De Los AndesLaSalle wrote the following: “it is never possible to start the system exactly in its equilibrium state, and the system is always subject to outside forces not taken into account by the differential equations. The system is disturbed and is displaced slightly from its equilibrium state. What happens? Does it remain near the equilibrium state? This is stability. Does it remain near the equilibrium state and in addition tend to return to the equilibrium? This is asymptotic stability.” Continuing with what LaSalle said, we conjecture that real-life systems are always under the influence of impulses, delays, memory, nonlocal conditions, and noises, which are intrinsic phenomena no taken into account by the mathematical model that is representing by a differential equation. For many control systems in real life, delays, impulses, and noises are natural properties that do not change their behavior. So, we conjecture that, under certain conditions, the abrupt changes, delays, and noises as perturbations of a system do not modify certain properties such as controllability. In this regard, we prove the interior S∗-controllability of the semilinear stochastic heat equation with impulses and delay on the state variable, and this is done by using new techniques avoiding fixed point theorems employed by Bashirov et al.http://dx.doi.org/10.1155/2020/2515160
collection DOAJ
language English
format Article
sources DOAJ
author Hugo Leiva
Miguel Narvaez
Zoraida Sivoli
spellingShingle Hugo Leiva
Miguel Narvaez
Zoraida Sivoli
Controllability of Impulsive Semilinear Stochastic Heat Equation with Delay
International Journal of Differential Equations
author_facet Hugo Leiva
Miguel Narvaez
Zoraida Sivoli
author_sort Hugo Leiva
title Controllability of Impulsive Semilinear Stochastic Heat Equation with Delay
title_short Controllability of Impulsive Semilinear Stochastic Heat Equation with Delay
title_full Controllability of Impulsive Semilinear Stochastic Heat Equation with Delay
title_fullStr Controllability of Impulsive Semilinear Stochastic Heat Equation with Delay
title_full_unstemmed Controllability of Impulsive Semilinear Stochastic Heat Equation with Delay
title_sort controllability of impulsive semilinear stochastic heat equation with delay
publisher Hindawi Limited
series International Journal of Differential Equations
issn 1687-9651
publishDate 2020-01-01
description LaSalle wrote the following: “it is never possible to start the system exactly in its equilibrium state, and the system is always subject to outside forces not taken into account by the differential equations. The system is disturbed and is displaced slightly from its equilibrium state. What happens? Does it remain near the equilibrium state? This is stability. Does it remain near the equilibrium state and in addition tend to return to the equilibrium? This is asymptotic stability.” Continuing with what LaSalle said, we conjecture that real-life systems are always under the influence of impulses, delays, memory, nonlocal conditions, and noises, which are intrinsic phenomena no taken into account by the mathematical model that is representing by a differential equation. For many control systems in real life, delays, impulses, and noises are natural properties that do not change their behavior. So, we conjecture that, under certain conditions, the abrupt changes, delays, and noises as perturbations of a system do not modify certain properties such as controllability. In this regard, we prove the interior S∗-controllability of the semilinear stochastic heat equation with impulses and delay on the state variable, and this is done by using new techniques avoiding fixed point theorems employed by Bashirov et al.
url http://dx.doi.org/10.1155/2020/2515160
work_keys_str_mv AT hugoleiva controllabilityofimpulsivesemilinearstochasticheatequationwithdelay
AT miguelnarvaez controllabilityofimpulsivesemilinearstochasticheatequationwithdelay
AT zoraidasivoli controllabilityofimpulsivesemilinearstochasticheatequationwithdelay
_version_ 1714981004342460416