Using genomic relationship likelihood for parentage assignment
Abstract Background Parentage assignment is usually based on a limited number of unlinked, independent genomic markers (microsatellites, low-density single nucleotide polymorphisms (SNPs), etc.). Classical methods for parentage assignment are exclusion-based (i.e. based on loci that violate Mendelia...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | deu |
Published: |
BMC
2018-05-01
|
Series: | Genetics Selection Evolution |
Online Access: | http://link.springer.com/article/10.1186/s12711-018-0397-7 |
id |
doaj-87f6931161644c8892f0c0d3a1b84072 |
---|---|
record_format |
Article |
spelling |
doaj-87f6931161644c8892f0c0d3a1b840722020-11-25T00:43:12ZdeuBMCGenetics Selection Evolution1297-96862018-05-0150111110.1186/s12711-018-0397-7Using genomic relationship likelihood for parentage assignmentKim E. Grashei0Jørgen Ødegård1Theo H. E. Meuwissen2AquaGen ASAquaGen ASDepartment of Animal and Aquacultural Sciences, Norwegian University of Life SciencesAbstract Background Parentage assignment is usually based on a limited number of unlinked, independent genomic markers (microsatellites, low-density single nucleotide polymorphisms (SNPs), etc.). Classical methods for parentage assignment are exclusion-based (i.e. based on loci that violate Mendelian inheritance) or likelihood-based, assuming independent inheritance of loci. For true parent–offspring relations, genotyping errors cause apparent violations of Mendelian inheritance. Thus, the maximum proportion of such violations must be determined, which is complicated by variable call- and genotype error rates among loci and individuals. Recently, genotyping using high-density SNP chips has become available at lower cost and is increasingly used in genetics research and breeding programs. However, dense SNPs are not independently inherited, violating the assumptions of the likelihood-based methods. Hence, parentage assignment usually assumes a maximum proportion of exclusions, or applies likelihood-based methods on a smaller subset of independent markers. Our aim was to develop a fast and accurate trio parentage assignment method for dense SNP data without prior genotyping error- or call rate knowledge among loci and individuals. This genomic relationship likelihood (GRL) method infers parentage by using genomic relationships, which are typically used in genomic prediction models. Results Using 50 simulated datasets with 53,427 to 55,517 SNPs, genotyping error rates of 1–3% and call rates of ~ 80 to 98%, GRL was found to be fast and highly (~ 99%) accurate for parentage assignment. An iterative approach was developed for training using the evaluation data, giving similar accuracy. For comparison, we used the Colony2 software that assigns parentage and sibship simultaneously to increase the power of the likelihood-based method and found that it has considerably lower accuracy than GRL. We also compared GRL with an exclusion-based method in which one of the parameters was estimated using GRL assignments.This method was slightly more accurate than GRL. Conclusions We show that GRL is a fast and accurate method of parentage assignment that can use dense, non-independent SNPs, with variable call rates and unknown genotyping error rates. By offering an alternative way of assigning parents, GRL is also suitable for estimating the expected proportion of inconsistent parent–offspring genotypes for exclusion-based models.http://link.springer.com/article/10.1186/s12711-018-0397-7 |
collection |
DOAJ |
language |
deu |
format |
Article |
sources |
DOAJ |
author |
Kim E. Grashei Jørgen Ødegård Theo H. E. Meuwissen |
spellingShingle |
Kim E. Grashei Jørgen Ødegård Theo H. E. Meuwissen Using genomic relationship likelihood for parentage assignment Genetics Selection Evolution |
author_facet |
Kim E. Grashei Jørgen Ødegård Theo H. E. Meuwissen |
author_sort |
Kim E. Grashei |
title |
Using genomic relationship likelihood for parentage assignment |
title_short |
Using genomic relationship likelihood for parentage assignment |
title_full |
Using genomic relationship likelihood for parentage assignment |
title_fullStr |
Using genomic relationship likelihood for parentage assignment |
title_full_unstemmed |
Using genomic relationship likelihood for parentage assignment |
title_sort |
using genomic relationship likelihood for parentage assignment |
publisher |
BMC |
series |
Genetics Selection Evolution |
issn |
1297-9686 |
publishDate |
2018-05-01 |
description |
Abstract Background Parentage assignment is usually based on a limited number of unlinked, independent genomic markers (microsatellites, low-density single nucleotide polymorphisms (SNPs), etc.). Classical methods for parentage assignment are exclusion-based (i.e. based on loci that violate Mendelian inheritance) or likelihood-based, assuming independent inheritance of loci. For true parent–offspring relations, genotyping errors cause apparent violations of Mendelian inheritance. Thus, the maximum proportion of such violations must be determined, which is complicated by variable call- and genotype error rates among loci and individuals. Recently, genotyping using high-density SNP chips has become available at lower cost and is increasingly used in genetics research and breeding programs. However, dense SNPs are not independently inherited, violating the assumptions of the likelihood-based methods. Hence, parentage assignment usually assumes a maximum proportion of exclusions, or applies likelihood-based methods on a smaller subset of independent markers. Our aim was to develop a fast and accurate trio parentage assignment method for dense SNP data without prior genotyping error- or call rate knowledge among loci and individuals. This genomic relationship likelihood (GRL) method infers parentage by using genomic relationships, which are typically used in genomic prediction models. Results Using 50 simulated datasets with 53,427 to 55,517 SNPs, genotyping error rates of 1–3% and call rates of ~ 80 to 98%, GRL was found to be fast and highly (~ 99%) accurate for parentage assignment. An iterative approach was developed for training using the evaluation data, giving similar accuracy. For comparison, we used the Colony2 software that assigns parentage and sibship simultaneously to increase the power of the likelihood-based method and found that it has considerably lower accuracy than GRL. We also compared GRL with an exclusion-based method in which one of the parameters was estimated using GRL assignments.This method was slightly more accurate than GRL. Conclusions We show that GRL is a fast and accurate method of parentage assignment that can use dense, non-independent SNPs, with variable call rates and unknown genotyping error rates. By offering an alternative way of assigning parents, GRL is also suitable for estimating the expected proportion of inconsistent parent–offspring genotypes for exclusion-based models. |
url |
http://link.springer.com/article/10.1186/s12711-018-0397-7 |
work_keys_str_mv |
AT kimegrashei usinggenomicrelationshiplikelihoodforparentageassignment AT jørgenødegard usinggenomicrelationshiplikelihoodforparentageassignment AT theohemeuwissen usinggenomicrelationshiplikelihoodforparentageassignment |
_version_ |
1725279991534452736 |