Urinary activities of proximal tubule enzymes in neonates treated with gentamicin
In order to determine the nephrotoxicity of gentamicin, an aminoglycoside antibiotic, activity of the enzymes dominantly localized in proximal tubules, i.e. alanine aminopeptidase (AAP), g-glutamyl transferase (GGT) and N-acetylß-D-glucosaminidase (NAG) was examined. Determinations were performed in...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Society of Medical Biochemists of Serbia, Belgrade
2010-01-01
|
Series: | Journal of Medical Biochemistry |
Subjects: | |
Online Access: | https://scindeks-clanci.ceon.rs/data/pdf/1452-8258/2010/1452-82581001044D.pdf |
Summary: | In order to determine the nephrotoxicity of gentamicin, an aminoglycoside antibiotic, activity of the enzymes dominantly localized in proximal tubules, i.e. alanine aminopeptidase (AAP), g-glutamyl transferase (GGT) and N-acetylß-D-glucosaminidase (NAG) was examined. Determinations were performed in 12-h urine samples of 30 neonates i.v. receiving gentamicin against Gram negative infections in daily doses of 5.0 mg/kg body mass for 10 consecutive days. The activities of the same enzymes were measured in 12-h urine samples of 30 examinées of the control group. The groups consisted of neonates of both sexes. The pretreatment period lasted for 5 days. On day 8 of gentamicin application, statistically significant differences in the activity of AAP and GGT expressed in U/mmol creatinine between the gentamicin-receiving and control group (p<0.01) were found. No significant differences in NAG activity of the gentamicin-treated group in comparison with the control were recorded during the 10-day gentamicin therapy. It can be concluded that 10-day treatment of neonates with usually prescribed gentamicin doses results in mild nephrotoxic changes close to the end of the therapy accompanied by increased activity of both urinary AAP and GGT, known as very sensitive indicators of nephrotoxicity. During the same treatment period no changes in NAG activity were observed, meaning that the antibiotic causes no severe injuries to proximal tubule cells at the level of cellular organelles. |
---|---|
ISSN: | 1452-8258 1452-8266 |