Frataxin Silencing Inactivates Mitochondrial Complex I in NSC34 Motoneuronal Cells and Alters Glutathione Homeostasis

Friedreich’s ataxia (FRDA) is a hereditary neurodegenerative disease characterized by a reduced synthesis of the mitochondrial iron chaperon protein frataxin as a result of a large GAA triplet-repeat expansion within the first intron of the frataxin gene. Despite neurodegeneration being the prominen...

Full description

Bibliographic Details
Main Authors: Barbara Carletti, Emanuela Piermarini, Giulia Tozzi, Lorena Travaglini, Alessandra Torraco, Anna Pastore, Marco Sparaco, Sara Petrillo, Rosalba Carrozzo, Enrico Bertini, Fiorella Piemonte
Format: Article
Language:English
Published: MDPI AG 2014-04-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:http://www.mdpi.com/1422-0067/15/4/5789
id doaj-87e5fa342aab4af0a11f8965a328a705
record_format Article
spelling doaj-87e5fa342aab4af0a11f8965a328a7052020-11-24T20:45:32ZengMDPI AGInternational Journal of Molecular Sciences1422-00672014-04-011545789580610.3390/ijms15045789ijms15045789Frataxin Silencing Inactivates Mitochondrial Complex I in NSC34 Motoneuronal Cells and Alters Glutathione HomeostasisBarbara Carletti0Emanuela Piermarini1Giulia Tozzi2Lorena Travaglini3Alessandra Torraco4Anna Pastore5Marco Sparaco6Sara Petrillo7Rosalba Carrozzo8Enrico Bertini9Fiorella Piemonte10Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, ItalyUnit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, ItalyUnit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, ItalyUnit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, ItalyUnit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, ItalyBiochemistry Laboratory, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, ItalyDivision of Neurology, Department of Neurosciences, Azienda Ospedaliera, "G. Rummo", Via Pacevecchia 53, 82100 Benevento, ItalyUnit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, ItalyUnit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, ItalyUnit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, ItalyUnit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, ItalyFriedreich’s ataxia (FRDA) is a hereditary neurodegenerative disease characterized by a reduced synthesis of the mitochondrial iron chaperon protein frataxin as a result of a large GAA triplet-repeat expansion within the first intron of the frataxin gene. Despite neurodegeneration being the prominent feature of this pathology involving both the central and the peripheral nervous system, information on the impact of frataxin deficiency in neurons is scant. Here, we describe a neuronal model displaying some major biochemical and morphological features of FRDA. By silencing the mouse NSC34 motor neurons for the frataxin gene with shRNA lentiviral vectors, we generated two cell lines with 40% and 70% residual amounts of frataxin, respectively. Frataxin-deficient cells showed a specific inhibition of mitochondrial Complex I (CI) activity already at 70% residual frataxin levels, whereas the glutathione imbalance progressively increased after silencing. These biochemical defects were associated with the inhibition of cell proliferation and morphological changes at the axonal compartment, both depending on the frataxin amount. Interestingly, at 70% residual frataxin levels, the in vivo treatment with the reduced glutathione revealed a partial rescue of cell proliferation. Thus, NSC34 frataxin silenced cells could be a suitable model to study the effect of frataxin deficiency in neurons and highlight glutathione as a potential beneficial therapeutic target for FRDA.http://www.mdpi.com/1422-0067/15/4/5789Friedreich’s ataxianeurodegenerationglutathioneoxidative stressmitochondrial enzymes
collection DOAJ
language English
format Article
sources DOAJ
author Barbara Carletti
Emanuela Piermarini
Giulia Tozzi
Lorena Travaglini
Alessandra Torraco
Anna Pastore
Marco Sparaco
Sara Petrillo
Rosalba Carrozzo
Enrico Bertini
Fiorella Piemonte
spellingShingle Barbara Carletti
Emanuela Piermarini
Giulia Tozzi
Lorena Travaglini
Alessandra Torraco
Anna Pastore
Marco Sparaco
Sara Petrillo
Rosalba Carrozzo
Enrico Bertini
Fiorella Piemonte
Frataxin Silencing Inactivates Mitochondrial Complex I in NSC34 Motoneuronal Cells and Alters Glutathione Homeostasis
International Journal of Molecular Sciences
Friedreich’s ataxia
neurodegeneration
glutathione
oxidative stress
mitochondrial enzymes
author_facet Barbara Carletti
Emanuela Piermarini
Giulia Tozzi
Lorena Travaglini
Alessandra Torraco
Anna Pastore
Marco Sparaco
Sara Petrillo
Rosalba Carrozzo
Enrico Bertini
Fiorella Piemonte
author_sort Barbara Carletti
title Frataxin Silencing Inactivates Mitochondrial Complex I in NSC34 Motoneuronal Cells and Alters Glutathione Homeostasis
title_short Frataxin Silencing Inactivates Mitochondrial Complex I in NSC34 Motoneuronal Cells and Alters Glutathione Homeostasis
title_full Frataxin Silencing Inactivates Mitochondrial Complex I in NSC34 Motoneuronal Cells and Alters Glutathione Homeostasis
title_fullStr Frataxin Silencing Inactivates Mitochondrial Complex I in NSC34 Motoneuronal Cells and Alters Glutathione Homeostasis
title_full_unstemmed Frataxin Silencing Inactivates Mitochondrial Complex I in NSC34 Motoneuronal Cells and Alters Glutathione Homeostasis
title_sort frataxin silencing inactivates mitochondrial complex i in nsc34 motoneuronal cells and alters glutathione homeostasis
publisher MDPI AG
series International Journal of Molecular Sciences
issn 1422-0067
publishDate 2014-04-01
description Friedreich’s ataxia (FRDA) is a hereditary neurodegenerative disease characterized by a reduced synthesis of the mitochondrial iron chaperon protein frataxin as a result of a large GAA triplet-repeat expansion within the first intron of the frataxin gene. Despite neurodegeneration being the prominent feature of this pathology involving both the central and the peripheral nervous system, information on the impact of frataxin deficiency in neurons is scant. Here, we describe a neuronal model displaying some major biochemical and morphological features of FRDA. By silencing the mouse NSC34 motor neurons for the frataxin gene with shRNA lentiviral vectors, we generated two cell lines with 40% and 70% residual amounts of frataxin, respectively. Frataxin-deficient cells showed a specific inhibition of mitochondrial Complex I (CI) activity already at 70% residual frataxin levels, whereas the glutathione imbalance progressively increased after silencing. These biochemical defects were associated with the inhibition of cell proliferation and morphological changes at the axonal compartment, both depending on the frataxin amount. Interestingly, at 70% residual frataxin levels, the in vivo treatment with the reduced glutathione revealed a partial rescue of cell proliferation. Thus, NSC34 frataxin silenced cells could be a suitable model to study the effect of frataxin deficiency in neurons and highlight glutathione as a potential beneficial therapeutic target for FRDA.
topic Friedreich’s ataxia
neurodegeneration
glutathione
oxidative stress
mitochondrial enzymes
url http://www.mdpi.com/1422-0067/15/4/5789
work_keys_str_mv AT barbaracarletti frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT emanuelapiermarini frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT giuliatozzi frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT lorenatravaglini frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT alessandratorraco frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT annapastore frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT marcosparaco frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT sarapetrillo frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT rosalbacarrozzo frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT enricobertini frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT fiorellapiemonte frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
_version_ 1716814373019713536