On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings

<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-96737-i2.gif"/></inline-formula> be a closed subset of a Banach space and <inline-formula><graphic file="1687-1812-2006-96737-i3.gif"/></inline-formula> an ultimately nonexpa...

Full description

Bibliographic Details
Main Author: Kiang MoTak
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2006/96737
id doaj-87ab6ba796f14b6491d30e5db80b1570
record_format Article
spelling doaj-87ab6ba796f14b6491d30e5db80b15702020-11-25T01:01:00ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122006-01-012006196737On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappingsKiang MoTak<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-96737-i2.gif"/></inline-formula> be a closed subset of a Banach space and <inline-formula><graphic file="1687-1812-2006-96737-i3.gif"/></inline-formula> an ultimately nonexpansive commutative semigroup of continuous selfmappings. If the <inline-formula><graphic file="1687-1812-2006-96737-i4.gif"/></inline-formula>-closure of <inline-formula><graphic file="1687-1812-2006-96737-i5.gif"/></inline-formula> is nonempty, then the closure of the orbit of any <inline-formula><graphic file="1687-1812-2006-96737-i6.gif"/></inline-formula>-closure point is a commutative topological group.</p> http://www.fixedpointtheoryandapplications.com/content/2006/96737
collection DOAJ
language English
format Article
sources DOAJ
author Kiang MoTak
spellingShingle Kiang MoTak
On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings
Fixed Point Theory and Applications
author_facet Kiang MoTak
author_sort Kiang MoTak
title On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings
title_short On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings
title_full On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings
title_fullStr On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings
title_full_unstemmed On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings
title_sort on the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings
publisher SpringerOpen
series Fixed Point Theory and Applications
issn 1687-1820
1687-1812
publishDate 2006-01-01
description <p/> <p>Let <inline-formula><graphic file="1687-1812-2006-96737-i2.gif"/></inline-formula> be a closed subset of a Banach space and <inline-formula><graphic file="1687-1812-2006-96737-i3.gif"/></inline-formula> an ultimately nonexpansive commutative semigroup of continuous selfmappings. If the <inline-formula><graphic file="1687-1812-2006-96737-i4.gif"/></inline-formula>-closure of <inline-formula><graphic file="1687-1812-2006-96737-i5.gif"/></inline-formula> is nonempty, then the closure of the orbit of any <inline-formula><graphic file="1687-1812-2006-96737-i6.gif"/></inline-formula>-closure point is a commutative topological group.</p>
url http://www.fixedpointtheoryandapplications.com/content/2006/96737
work_keys_str_mv AT kiangmotak ontheorbitsofinlineformulagraphicfile16871812200696737i1gifinlineformulaclosurepointsofultimatelynonexpansivemappings
_version_ 1715877498239057920