On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings
<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-96737-i2.gif"/></inline-formula> be a closed subset of a Banach space and <inline-formula><graphic file="1687-1812-2006-96737-i3.gif"/></inline-formula> an ultimately nonexpa...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2006-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2006/96737 |
id |
doaj-87ab6ba796f14b6491d30e5db80b1570 |
---|---|
record_format |
Article |
spelling |
doaj-87ab6ba796f14b6491d30e5db80b15702020-11-25T01:01:00ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122006-01-012006196737On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappingsKiang MoTak<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-96737-i2.gif"/></inline-formula> be a closed subset of a Banach space and <inline-formula><graphic file="1687-1812-2006-96737-i3.gif"/></inline-formula> an ultimately nonexpansive commutative semigroup of continuous selfmappings. If the <inline-formula><graphic file="1687-1812-2006-96737-i4.gif"/></inline-formula>-closure of <inline-formula><graphic file="1687-1812-2006-96737-i5.gif"/></inline-formula> is nonempty, then the closure of the orbit of any <inline-formula><graphic file="1687-1812-2006-96737-i6.gif"/></inline-formula>-closure point is a commutative topological group.</p> http://www.fixedpointtheoryandapplications.com/content/2006/96737 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kiang MoTak |
spellingShingle |
Kiang MoTak On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings Fixed Point Theory and Applications |
author_facet |
Kiang MoTak |
author_sort |
Kiang MoTak |
title |
On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings |
title_short |
On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings |
title_full |
On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings |
title_fullStr |
On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings |
title_full_unstemmed |
On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings |
title_sort |
on the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings |
publisher |
SpringerOpen |
series |
Fixed Point Theory and Applications |
issn |
1687-1820 1687-1812 |
publishDate |
2006-01-01 |
description |
<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-96737-i2.gif"/></inline-formula> be a closed subset of a Banach space and <inline-formula><graphic file="1687-1812-2006-96737-i3.gif"/></inline-formula> an ultimately nonexpansive commutative semigroup of continuous selfmappings. If the <inline-formula><graphic file="1687-1812-2006-96737-i4.gif"/></inline-formula>-closure of <inline-formula><graphic file="1687-1812-2006-96737-i5.gif"/></inline-formula> is nonempty, then the closure of the orbit of any <inline-formula><graphic file="1687-1812-2006-96737-i6.gif"/></inline-formula>-closure point is a commutative topological group.</p> |
url |
http://www.fixedpointtheoryandapplications.com/content/2006/96737 |
work_keys_str_mv |
AT kiangmotak ontheorbitsofinlineformulagraphicfile16871812200696737i1gifinlineformulaclosurepointsofultimatelynonexpansivemappings |
_version_ |
1715877498239057920 |