On Some Generalized <inline-formula> <graphic file="1029-242X-2011-485730-i1.gif"/></inline-formula>-Difference Riesz Sequence Spaces and Uniform Opial Property
<p>Abstract</p> <p>We define the new generalized difference Riesz sequence spaces <inline-formula> <graphic file="1029-242X-2011-485730-i2.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2011-485730-i3.gif"/></...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2011-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/2011/485730 |
id |
doaj-87a97f839dd346f7948f4288d5d47509 |
---|---|
record_format |
Article |
spelling |
doaj-87a97f839dd346f7948f4288d5d475092020-11-25T01:27:25ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2011-01-0120111485730On Some Generalized <inline-formula> <graphic file="1029-242X-2011-485730-i1.gif"/></inline-formula>-Difference Riesz Sequence Spaces and Uniform Opial PropertyBaşarır MetinÖztürk Mahpeyker<p>Abstract</p> <p>We define the new generalized difference Riesz sequence spaces <inline-formula> <graphic file="1029-242X-2011-485730-i2.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2011-485730-i3.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2011-485730-i4.gif"/></inline-formula> which consist of all the sequences whose <inline-formula> <graphic file="1029-242X-2011-485730-i5.gif"/></inline-formula>-transforms are in the Riesz sequence spaces <inline-formula> <graphic file="1029-242X-2011-485730-i6.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2011-485730-i7.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2011-485730-i8.gif"/></inline-formula>, respectively, introduced by Altay and Başar (2006). We examine some topological properties and compute the <inline-formula> <graphic file="1029-242X-2011-485730-i9.gif"/></inline-formula>-, <inline-formula> <graphic file="1029-242X-2011-485730-i10.gif"/></inline-formula>-, and <inline-formula> <graphic file="1029-242X-2011-485730-i11.gif"/></inline-formula>-duals of the spaces <inline-formula> <graphic file="1029-242X-2011-485730-i12.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2011-485730-i13.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2011-485730-i14.gif"/></inline-formula>. Finally, we determine the necessary and sufficient conditions on the matrix transformation from the spaces <inline-formula> <graphic file="1029-242X-2011-485730-i15.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2011-485730-i16.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2011-485730-i17.gif"/></inline-formula> to the spaces <inline-formula> <graphic file="1029-242X-2011-485730-i18.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2011-485730-i19.gif"/></inline-formula> and prove that sequence spaces <inline-formula> <graphic file="1029-242X-2011-485730-i20.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2011-485730-i21.gif"/></inline-formula> have the uniform Opial property for <inline-formula> <graphic file="1029-242X-2011-485730-i22.gif"/></inline-formula> for all <inline-formula> <graphic file="1029-242X-2011-485730-i23.gif"/></inline-formula><inline-formula> <graphic file="1029-242X-2011-485730-i24.gif"/></inline-formula>.</p>http://www.journalofinequalitiesandapplications.com/content/2011/485730 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Başarır Metin Öztürk Mahpeyker |
spellingShingle |
Başarır Metin Öztürk Mahpeyker On Some Generalized <inline-formula> <graphic file="1029-242X-2011-485730-i1.gif"/></inline-formula>-Difference Riesz Sequence Spaces and Uniform Opial Property Journal of Inequalities and Applications |
author_facet |
Başarır Metin Öztürk Mahpeyker |
author_sort |
Başarır Metin |
title |
On Some Generalized <inline-formula> <graphic file="1029-242X-2011-485730-i1.gif"/></inline-formula>-Difference Riesz Sequence Spaces and Uniform Opial Property |
title_short |
On Some Generalized <inline-formula> <graphic file="1029-242X-2011-485730-i1.gif"/></inline-formula>-Difference Riesz Sequence Spaces and Uniform Opial Property |
title_full |
On Some Generalized <inline-formula> <graphic file="1029-242X-2011-485730-i1.gif"/></inline-formula>-Difference Riesz Sequence Spaces and Uniform Opial Property |
title_fullStr |
On Some Generalized <inline-formula> <graphic file="1029-242X-2011-485730-i1.gif"/></inline-formula>-Difference Riesz Sequence Spaces and Uniform Opial Property |
title_full_unstemmed |
On Some Generalized <inline-formula> <graphic file="1029-242X-2011-485730-i1.gif"/></inline-formula>-Difference Riesz Sequence Spaces and Uniform Opial Property |
title_sort |
on some generalized <inline-formula> <graphic file="1029-242x-2011-485730-i1.gif"/></inline-formula>-difference riesz sequence spaces and uniform opial property |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
2011-01-01 |
description |
<p>Abstract</p> <p>We define the new generalized difference Riesz sequence spaces <inline-formula> <graphic file="1029-242X-2011-485730-i2.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2011-485730-i3.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2011-485730-i4.gif"/></inline-formula> which consist of all the sequences whose <inline-formula> <graphic file="1029-242X-2011-485730-i5.gif"/></inline-formula>-transforms are in the Riesz sequence spaces <inline-formula> <graphic file="1029-242X-2011-485730-i6.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2011-485730-i7.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2011-485730-i8.gif"/></inline-formula>, respectively, introduced by Altay and Başar (2006). We examine some topological properties and compute the <inline-formula> <graphic file="1029-242X-2011-485730-i9.gif"/></inline-formula>-, <inline-formula> <graphic file="1029-242X-2011-485730-i10.gif"/></inline-formula>-, and <inline-formula> <graphic file="1029-242X-2011-485730-i11.gif"/></inline-formula>-duals of the spaces <inline-formula> <graphic file="1029-242X-2011-485730-i12.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2011-485730-i13.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2011-485730-i14.gif"/></inline-formula>. Finally, we determine the necessary and sufficient conditions on the matrix transformation from the spaces <inline-formula> <graphic file="1029-242X-2011-485730-i15.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2011-485730-i16.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2011-485730-i17.gif"/></inline-formula> to the spaces <inline-formula> <graphic file="1029-242X-2011-485730-i18.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2011-485730-i19.gif"/></inline-formula> and prove that sequence spaces <inline-formula> <graphic file="1029-242X-2011-485730-i20.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2011-485730-i21.gif"/></inline-formula> have the uniform Opial property for <inline-formula> <graphic file="1029-242X-2011-485730-i22.gif"/></inline-formula> for all <inline-formula> <graphic file="1029-242X-2011-485730-i23.gif"/></inline-formula><inline-formula> <graphic file="1029-242X-2011-485730-i24.gif"/></inline-formula>.</p> |
url |
http://www.journalofinequalitiesandapplications.com/content/2011/485730 |
work_keys_str_mv |
AT ba351ar305rmetin onsomegeneralizedinlineformulagraphicfile1029242x2011485730i1gifinlineformuladifferencerieszsequencespacesanduniformopialproperty AT 214zt252rkmahpeyker onsomegeneralizedinlineformulagraphicfile1029242x2011485730i1gifinlineformuladifferencerieszsequencespacesanduniformopialproperty |
_version_ |
1725105752761171968 |