AffyMiner: mining differentially expressed genes and biological knowledge in GeneChip microarray data
<p>Abstract</p> <p>Background</p> <p>DNA microarrays are a powerful tool for monitoring the expression of tens of thousands of genes simultaneously. With the advance of microarray technology, the challenge issue becomes how to analyze a large amount of microarray data a...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2006-12-01
|
Series: | BMC Bioinformatics |
id |
doaj-879c7c1d84184d01b1b691696fcc1f38 |
---|---|
record_format |
Article |
spelling |
doaj-879c7c1d84184d01b1b691696fcc1f382020-11-24T21:25:46ZengBMCBMC Bioinformatics1471-21052006-12-017Suppl 4S2610.1186/1471-2105-7-S4-S26AffyMiner: mining differentially expressed genes and biological knowledge in GeneChip microarray dataXia YuannanNguyen The VLu GuoqingFromm Michael<p>Abstract</p> <p>Background</p> <p>DNA microarrays are a powerful tool for monitoring the expression of tens of thousands of genes simultaneously. With the advance of microarray technology, the challenge issue becomes how to analyze a large amount of microarray data and make biological sense of them. Affymetrix GeneChips are widely used microarrays, where a variety of statistical algorithms have been explored and used for detecting significant genes in the experiment. These methods rely solely on the quantitative data, i.e., signal intensity; however, qualitative data are also important parameters in detecting differentially expressed genes.</p> <p>Results</p> <p>AffyMiner is a tool developed for detecting differentially expressed genes in Affymetrix GeneChip microarray data and for associating gene annotation and gene ontology information with the genes detected. AffyMiner consists of the functional modules, <it>GeneFinder </it>for detecting significant genes in a treatment versus control experiment and <it>GOTree </it>for mapping genes of interest onto the Gene Ontology (GO) space; and interfaces to run Cluster, a program for clustering analysis, and GenMAPP, a program for pathway analysis. AffyMiner has been used for analyzing the GeneChip data and the results were presented in several publications.</p> <p>Conclusion</p> <p>AffyMiner fills an important gap in finding differentially expressed genes in Affymetrix GeneChip microarray data. AffyMiner effectively deals with multiple replicates in the experiment and takes into account both quantitative and qualitative data in identifying significant genes. AffyMiner reduces the time and effort needed to compare data from multiple arrays and to interpret the possible biological implications associated with significant changes in a gene's expression.</p> |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xia Yuannan Nguyen The V Lu Guoqing Fromm Michael |
spellingShingle |
Xia Yuannan Nguyen The V Lu Guoqing Fromm Michael AffyMiner: mining differentially expressed genes and biological knowledge in GeneChip microarray data BMC Bioinformatics |
author_facet |
Xia Yuannan Nguyen The V Lu Guoqing Fromm Michael |
author_sort |
Xia Yuannan |
title |
AffyMiner: mining differentially expressed genes and biological knowledge in GeneChip microarray data |
title_short |
AffyMiner: mining differentially expressed genes and biological knowledge in GeneChip microarray data |
title_full |
AffyMiner: mining differentially expressed genes and biological knowledge in GeneChip microarray data |
title_fullStr |
AffyMiner: mining differentially expressed genes and biological knowledge in GeneChip microarray data |
title_full_unstemmed |
AffyMiner: mining differentially expressed genes and biological knowledge in GeneChip microarray data |
title_sort |
affyminer: mining differentially expressed genes and biological knowledge in genechip microarray data |
publisher |
BMC |
series |
BMC Bioinformatics |
issn |
1471-2105 |
publishDate |
2006-12-01 |
description |
<p>Abstract</p> <p>Background</p> <p>DNA microarrays are a powerful tool for monitoring the expression of tens of thousands of genes simultaneously. With the advance of microarray technology, the challenge issue becomes how to analyze a large amount of microarray data and make biological sense of them. Affymetrix GeneChips are widely used microarrays, where a variety of statistical algorithms have been explored and used for detecting significant genes in the experiment. These methods rely solely on the quantitative data, i.e., signal intensity; however, qualitative data are also important parameters in detecting differentially expressed genes.</p> <p>Results</p> <p>AffyMiner is a tool developed for detecting differentially expressed genes in Affymetrix GeneChip microarray data and for associating gene annotation and gene ontology information with the genes detected. AffyMiner consists of the functional modules, <it>GeneFinder </it>for detecting significant genes in a treatment versus control experiment and <it>GOTree </it>for mapping genes of interest onto the Gene Ontology (GO) space; and interfaces to run Cluster, a program for clustering analysis, and GenMAPP, a program for pathway analysis. AffyMiner has been used for analyzing the GeneChip data and the results were presented in several publications.</p> <p>Conclusion</p> <p>AffyMiner fills an important gap in finding differentially expressed genes in Affymetrix GeneChip microarray data. AffyMiner effectively deals with multiple replicates in the experiment and takes into account both quantitative and qualitative data in identifying significant genes. AffyMiner reduces the time and effort needed to compare data from multiple arrays and to interpret the possible biological implications associated with significant changes in a gene's expression.</p> |
work_keys_str_mv |
AT xiayuannan affyminerminingdifferentiallyexpressedgenesandbiologicalknowledgeingenechipmicroarraydata AT nguyenthev affyminerminingdifferentiallyexpressedgenesandbiologicalknowledgeingenechipmicroarraydata AT luguoqing affyminerminingdifferentiallyexpressedgenesandbiologicalknowledgeingenechipmicroarraydata AT frommmichael affyminerminingdifferentiallyexpressedgenesandbiologicalknowledgeingenechipmicroarraydata |
_version_ |
1725982976982908928 |