PIP5KIβ selectively modulates apical endocytosis in polarized renal epithelial cells.

Localized synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] at clathrin coated pits (CCPs) is crucial for the recruitment of adaptors and other components of the internalization machinery, as well as for regulating actin dynamics during endocytosis. PtdIns(4,5)P(2) is synthesized...

Full description

Bibliographic Details
Main Authors: Christina M Szalinski, Christopher J Guerriero, Wily G Ruiz, Brianne E Docter, Youssef Rbaibi, Núria M Pastor-Soler, Gerard Apodaca, Manojkumar A Puthenveedu, Ora A Weisz
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3547069?pdf=render
id doaj-875ca782e48b4344a81acae0687ed123
record_format Article
spelling doaj-875ca782e48b4344a81acae0687ed1232020-11-24T20:50:00ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0181e5379010.1371/journal.pone.0053790PIP5KIβ selectively modulates apical endocytosis in polarized renal epithelial cells.Christina M SzalinskiChristopher J GuerrieroWily G RuizBrianne E DocterYoussef RbaibiNúria M Pastor-SolerGerard ApodacaManojkumar A PuthenveeduOra A WeiszLocalized synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] at clathrin coated pits (CCPs) is crucial for the recruitment of adaptors and other components of the internalization machinery, as well as for regulating actin dynamics during endocytosis. PtdIns(4,5)P(2) is synthesized from phosphatidylinositol 4-phosphate by any of three phosphatidylinositol 5-kinase type I (PIP5KI) isoforms (α, β or γ). PIP5KIβ localizes almost exclusively to the apical surface in polarized mouse cortical collecting duct cells, whereas the other isoforms have a less polarized membrane distribution. We therefore investigated the role of PIP5KI isoforms in endocytosis at the apical and basolateral domains. Endocytosis at the apical surface is known to occur more slowly than at the basolateral surface. Apical endocytosis was selectively stimulated by overexpression of PIP5KIβ whereas the other isoforms had no effect on either apical or basolateral internalization. We found no difference in the affinity for PtdIns(4,5)P(2)-containing liposomes of the PtdIns(4,5)P(2) binding domains of epsin and Dab2, consistent with a generic effect of elevated PtdIns(4,5)P(2) on apical endocytosis. Additionally, using apical total internal reflection fluorescence imaging and electron microscopy we found that cells overexpressing PIP5KIβ have fewer apical CCPs but more internalized coated structures than control cells, consistent with enhanced maturation of apical CCPs. Together, our results suggest that synthesis of PtdIns(4,5)P(2) mediated by PIP5KIβ is rate limiting for apical but not basolateral endocytosis in polarized kidney cells. PtdIns(4,5)P(2) may be required to overcome specific structural constraints that limit the efficiency of apical endocytosis.http://europepmc.org/articles/PMC3547069?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Christina M Szalinski
Christopher J Guerriero
Wily G Ruiz
Brianne E Docter
Youssef Rbaibi
Núria M Pastor-Soler
Gerard Apodaca
Manojkumar A Puthenveedu
Ora A Weisz
spellingShingle Christina M Szalinski
Christopher J Guerriero
Wily G Ruiz
Brianne E Docter
Youssef Rbaibi
Núria M Pastor-Soler
Gerard Apodaca
Manojkumar A Puthenveedu
Ora A Weisz
PIP5KIβ selectively modulates apical endocytosis in polarized renal epithelial cells.
PLoS ONE
author_facet Christina M Szalinski
Christopher J Guerriero
Wily G Ruiz
Brianne E Docter
Youssef Rbaibi
Núria M Pastor-Soler
Gerard Apodaca
Manojkumar A Puthenveedu
Ora A Weisz
author_sort Christina M Szalinski
title PIP5KIβ selectively modulates apical endocytosis in polarized renal epithelial cells.
title_short PIP5KIβ selectively modulates apical endocytosis in polarized renal epithelial cells.
title_full PIP5KIβ selectively modulates apical endocytosis in polarized renal epithelial cells.
title_fullStr PIP5KIβ selectively modulates apical endocytosis in polarized renal epithelial cells.
title_full_unstemmed PIP5KIβ selectively modulates apical endocytosis in polarized renal epithelial cells.
title_sort pip5kiβ selectively modulates apical endocytosis in polarized renal epithelial cells.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2013-01-01
description Localized synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] at clathrin coated pits (CCPs) is crucial for the recruitment of adaptors and other components of the internalization machinery, as well as for regulating actin dynamics during endocytosis. PtdIns(4,5)P(2) is synthesized from phosphatidylinositol 4-phosphate by any of three phosphatidylinositol 5-kinase type I (PIP5KI) isoforms (α, β or γ). PIP5KIβ localizes almost exclusively to the apical surface in polarized mouse cortical collecting duct cells, whereas the other isoforms have a less polarized membrane distribution. We therefore investigated the role of PIP5KI isoforms in endocytosis at the apical and basolateral domains. Endocytosis at the apical surface is known to occur more slowly than at the basolateral surface. Apical endocytosis was selectively stimulated by overexpression of PIP5KIβ whereas the other isoforms had no effect on either apical or basolateral internalization. We found no difference in the affinity for PtdIns(4,5)P(2)-containing liposomes of the PtdIns(4,5)P(2) binding domains of epsin and Dab2, consistent with a generic effect of elevated PtdIns(4,5)P(2) on apical endocytosis. Additionally, using apical total internal reflection fluorescence imaging and electron microscopy we found that cells overexpressing PIP5KIβ have fewer apical CCPs but more internalized coated structures than control cells, consistent with enhanced maturation of apical CCPs. Together, our results suggest that synthesis of PtdIns(4,5)P(2) mediated by PIP5KIβ is rate limiting for apical but not basolateral endocytosis in polarized kidney cells. PtdIns(4,5)P(2) may be required to overcome specific structural constraints that limit the efficiency of apical endocytosis.
url http://europepmc.org/articles/PMC3547069?pdf=render
work_keys_str_mv AT christinamszalinski pip5kibselectivelymodulatesapicalendocytosisinpolarizedrenalepithelialcells
AT christopherjguerriero pip5kibselectivelymodulatesapicalendocytosisinpolarizedrenalepithelialcells
AT wilygruiz pip5kibselectivelymodulatesapicalendocytosisinpolarizedrenalepithelialcells
AT brianneedocter pip5kibselectivelymodulatesapicalendocytosisinpolarizedrenalepithelialcells
AT youssefrbaibi pip5kibselectivelymodulatesapicalendocytosisinpolarizedrenalepithelialcells
AT nuriampastorsoler pip5kibselectivelymodulatesapicalendocytosisinpolarizedrenalepithelialcells
AT gerardapodaca pip5kibselectivelymodulatesapicalendocytosisinpolarizedrenalepithelialcells
AT manojkumaraputhenveedu pip5kibselectivelymodulatesapicalendocytosisinpolarizedrenalepithelialcells
AT oraaweisz pip5kibselectivelymodulatesapicalendocytosisinpolarizedrenalepithelialcells
_version_ 1716805090474459136