Summary: | The constant problems evidenced in the Brazilian hydrological scenario, where the source of hydraulic potential corresponds to about 63.9% of the energy matrix, coupled with the exponential growth in the supply of renewable energy, corroborates the importance of thermal power generation as the basis of Brazilian’s energy matrix. With the operation of thermal power plants, which characteristically involve a large number of systems, subsystems, and auxiliary equipment, there is a high demand for the use of methodologies for monitoring and controlling processes, analyzing failures, and implementing improvements and actions that increase the reliability and, consequently, reduce the failure rate. In this context, decision-making about prioritizing criticality for operational monitoring of an asset’s components, from the perspective of operation and maintenance planning and based on reliability-centered maintenance (RCM) concepts, can be considered a complex task. Given this, the research seeks to demonstrate how the “Measuring Attractiveness by a Category Based Evaluation Technique (MACBETH)” method can be applied to the development of a multiple criteria model to support decision making in ordering the criticality of systems in operational inspection routes of thermal power plants, to propose new routines execution methodologies, aiming at increasing the productivity of the operation team. According to the results of the judgment matrix, the ordering proposal allowed a strategy for the execution of the current operational routes, redefining criticality, periodicity, routing, and applied resources, maintaining the reliability of the plant. It limits itself to assessing the criticality of the subsystems and monitored points belonging to the boiler system. These are typical of thermoelectric plants classified within the Rankine thermodynamic cycle and represent a significant part of the evaluation proposal.
|