A Two-Step Methodology for Free Rider Mitigation with an Improved Settlement Algorithm: Regression in CBL Estimation and New Incentive Payment Rule in Residential Demand Response
Recent demand response (DR) research efforts have focused on reducing the peak demand, and thereby electricity prices. Load reductions from DR programs can be viewed as equivalent electricity generation by conventional means. Thus, utility companies must pay incentives to customers who reduce their...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-12-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/11/12/3417 |
id |
doaj-875b8b6d4e41470e85bd4be3966b793e |
---|---|
record_format |
Article |
spelling |
doaj-875b8b6d4e41470e85bd4be3966b793e2020-11-24T21:28:54ZengMDPI AGEnergies1996-10732018-12-011112341710.3390/en11123417en11123417A Two-Step Methodology for Free Rider Mitigation with an Improved Settlement Algorithm: Regression in CBL Estimation and New Incentive Payment Rule in Residential Demand ResponseEunjung Lee0Dongsik Jang1Jinho Kim2School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, KoreaKorea Electric Power Research Institute, 105 Munji-ro, Yuseong-gu, Daejeon 34056, KoreaSchool of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, KoreaRecent demand response (DR) research efforts have focused on reducing the peak demand, and thereby electricity prices. Load reductions from DR programs can be viewed as equivalent electricity generation by conventional means. Thus, utility companies must pay incentives to customers who reduce their demand accordingly. However, many key variables intrinsic to residential customers are significantly more complicated compared to those of commercial and industrial customers. Thus, residential DR programs are economically difficult to operate, especially because excess incentive settlements can result in free riders, who get incentives without reducing their loads. Improving baseline estimation accuracy is insufficient to solve this problem. To alleviate the free rider problem, we proposed an improved two-step method—estimating the baseline load using regression and implementing a minimum-threshold payment rule. We applied the proposed method to data from residential customers participating in a peak-time rebate program in Korea. It initially suffered from numerous free riders caused by inaccurate baseline estimation. The proposed method mitigated the issue by reducing the number of free riders. The results indicate the possibility of lowering the existing incentive payment. The findings indicate that it is possible to run more stable residential DR programs by mitigating the uncertainty associated with customer electricity consumption.https://www.mdpi.com/1996-1073/11/12/3417demand responsepeak-time rebateincentive payment rulefree ridercustomer baseline loadbaseline estimationregression |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Eunjung Lee Dongsik Jang Jinho Kim |
spellingShingle |
Eunjung Lee Dongsik Jang Jinho Kim A Two-Step Methodology for Free Rider Mitigation with an Improved Settlement Algorithm: Regression in CBL Estimation and New Incentive Payment Rule in Residential Demand Response Energies demand response peak-time rebate incentive payment rule free rider customer baseline load baseline estimation regression |
author_facet |
Eunjung Lee Dongsik Jang Jinho Kim |
author_sort |
Eunjung Lee |
title |
A Two-Step Methodology for Free Rider Mitigation with an Improved Settlement Algorithm: Regression in CBL Estimation and New Incentive Payment Rule in Residential Demand Response |
title_short |
A Two-Step Methodology for Free Rider Mitigation with an Improved Settlement Algorithm: Regression in CBL Estimation and New Incentive Payment Rule in Residential Demand Response |
title_full |
A Two-Step Methodology for Free Rider Mitigation with an Improved Settlement Algorithm: Regression in CBL Estimation and New Incentive Payment Rule in Residential Demand Response |
title_fullStr |
A Two-Step Methodology for Free Rider Mitigation with an Improved Settlement Algorithm: Regression in CBL Estimation and New Incentive Payment Rule in Residential Demand Response |
title_full_unstemmed |
A Two-Step Methodology for Free Rider Mitigation with an Improved Settlement Algorithm: Regression in CBL Estimation and New Incentive Payment Rule in Residential Demand Response |
title_sort |
two-step methodology for free rider mitigation with an improved settlement algorithm: regression in cbl estimation and new incentive payment rule in residential demand response |
publisher |
MDPI AG |
series |
Energies |
issn |
1996-1073 |
publishDate |
2018-12-01 |
description |
Recent demand response (DR) research efforts have focused on reducing the peak demand, and thereby electricity prices. Load reductions from DR programs can be viewed as equivalent electricity generation by conventional means. Thus, utility companies must pay incentives to customers who reduce their demand accordingly. However, many key variables intrinsic to residential customers are significantly more complicated compared to those of commercial and industrial customers. Thus, residential DR programs are economically difficult to operate, especially because excess incentive settlements can result in free riders, who get incentives without reducing their loads. Improving baseline estimation accuracy is insufficient to solve this problem. To alleviate the free rider problem, we proposed an improved two-step method—estimating the baseline load using regression and implementing a minimum-threshold payment rule. We applied the proposed method to data from residential customers participating in a peak-time rebate program in Korea. It initially suffered from numerous free riders caused by inaccurate baseline estimation. The proposed method mitigated the issue by reducing the number of free riders. The results indicate the possibility of lowering the existing incentive payment. The findings indicate that it is possible to run more stable residential DR programs by mitigating the uncertainty associated with customer electricity consumption. |
topic |
demand response peak-time rebate incentive payment rule free rider customer baseline load baseline estimation regression |
url |
https://www.mdpi.com/1996-1073/11/12/3417 |
work_keys_str_mv |
AT eunjunglee atwostepmethodologyforfreeridermitigationwithanimprovedsettlementalgorithmregressionincblestimationandnewincentivepaymentruleinresidentialdemandresponse AT dongsikjang atwostepmethodologyforfreeridermitigationwithanimprovedsettlementalgorithmregressionincblestimationandnewincentivepaymentruleinresidentialdemandresponse AT jinhokim atwostepmethodologyforfreeridermitigationwithanimprovedsettlementalgorithmregressionincblestimationandnewincentivepaymentruleinresidentialdemandresponse AT eunjunglee twostepmethodologyforfreeridermitigationwithanimprovedsettlementalgorithmregressionincblestimationandnewincentivepaymentruleinresidentialdemandresponse AT dongsikjang twostepmethodologyforfreeridermitigationwithanimprovedsettlementalgorithmregressionincblestimationandnewincentivepaymentruleinresidentialdemandresponse AT jinhokim twostepmethodologyforfreeridermitigationwithanimprovedsettlementalgorithmregressionincblestimationandnewincentivepaymentruleinresidentialdemandresponse |
_version_ |
1725968741373575168 |