Summary: | Let 𝒜 be a unital C*-algebra with a faithful state ϕ. We study the geometry of the unit sphere 𝕊ϕ = {x ∈ 𝒜 : ϕ(x*x) = 1} and the projective space ℙϕ = 𝕊ϕ/𝕋. These spaces are shown to be smooth manifolds and homogeneous spaces of the group 𝒰ϕ(𝒜) of isomorphisms acting in 𝒜 which preserve the inner product induced by ϕ, which is a smooth Banach-Lie group. An important role is played by the theory of operators in Banach spaces with two norms, as developed by M.G. Krein and P. Lax. We define a metric in ℙϕ, and prove the existence of minimal geodesics, both with given initial data, and given endpoints.
|