An Interior Point Method for L1/2-SVM and Application to Feature Selection in Classification
This paper studies feature selection for support vector machine (SVM). By the use of the L1/2 regularization technique, we propose a new model L1/2-SVM. To solve this nonconvex and non-Lipschitz optimization problem, we first transform it into an equivalent quadratic constrained optimization model w...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2014/942520 |