IDENTIFIKASI GORESAN DASAR MANDARIN DENGAN METODE MULTILAYER PERCEPTRON
Mandarin Language is the second international language after English Language. Mandarin Language is different with English Language. Mandarin Language consists of stroke, intonation and pin yin. The basic strokes in Mandarin Language are eleven strokes. In this researc...
Main Author: | |
---|---|
Format: | Article |
Language: | Indonesian |
Published: |
LPPM Universitas Potensi Utama
2015-02-01
|
Series: | CSRID Journal |
Subjects: | |
Online Access: | http://csrid.potensi-utama.ac.id/ojs/index.php/CSRID/article/view/61 |
id |
doaj-873897289618492a9ce5a5ed9899868c |
---|---|
record_format |
Article |
spelling |
doaj-873897289618492a9ce5a5ed9899868c2020-11-24T21:18:17ZindLPPM Universitas Potensi UtamaCSRID Journal2085-13672460-870X2015-02-01711323IDENTIFIKASI GORESAN DASAR MANDARIN DENGAN METODE MULTILAYER PERCEPTRONDewi0STMIK GI MDP, PalembangMandarin Language is the second international language after English Language. Mandarin Language is different with English Language. Mandarin Language consists of stroke, intonation and pin yin. The basic strokes in Mandarin Language are eleven strokes. In this research, author identifies the basic stroke of Mandarin using Multilayer Perceptron to determine how the accuracy of Multilayer Perceptron to recognize the strokes. Data of the basic stroke of Mandarin that used are strokes from several different people.The data has been saved in image with size 80x80 pixel and changed into black and white image. Then taking the FFT and Mean Citra value from the image. The next step is training the data, determining the target and implementation the multilayer perceptron method. The accuracy that reached by multilayer perceptron method in identifying the basic stroke of Mandarin is 59.09% with 45 node of hidden layer. The node amount of hidden layer very affect the output value. http://csrid.potensi-utama.ac.id/ojs/index.php/CSRID/article/view/61Basic StrokeMandarin Language |
collection |
DOAJ |
language |
Indonesian |
format |
Article |
sources |
DOAJ |
author |
Dewi |
spellingShingle |
Dewi IDENTIFIKASI GORESAN DASAR MANDARIN DENGAN METODE MULTILAYER PERCEPTRON CSRID Journal Basic Stroke Mandarin Language |
author_facet |
Dewi |
author_sort |
Dewi |
title |
IDENTIFIKASI GORESAN DASAR MANDARIN DENGAN METODE MULTILAYER PERCEPTRON |
title_short |
IDENTIFIKASI GORESAN DASAR MANDARIN DENGAN METODE MULTILAYER PERCEPTRON |
title_full |
IDENTIFIKASI GORESAN DASAR MANDARIN DENGAN METODE MULTILAYER PERCEPTRON |
title_fullStr |
IDENTIFIKASI GORESAN DASAR MANDARIN DENGAN METODE MULTILAYER PERCEPTRON |
title_full_unstemmed |
IDENTIFIKASI GORESAN DASAR MANDARIN DENGAN METODE MULTILAYER PERCEPTRON |
title_sort |
identifikasi goresan dasar mandarin dengan metode multilayer perceptron |
publisher |
LPPM Universitas Potensi Utama |
series |
CSRID Journal |
issn |
2085-1367 2460-870X |
publishDate |
2015-02-01 |
description |
Mandarin Language is the second international language after English Language.
Mandarin Language is different with English Language. Mandarin Language consists of stroke,
intonation and pin yin. The basic strokes in Mandarin Language are eleven strokes. In this
research, author identifies the basic stroke of Mandarin using Multilayer Perceptron to determine
how the accuracy of Multilayer Perceptron to recognize the strokes. Data of the basic stroke of Mandarin that used are strokes from several different people.The data has been saved in image with size 80x80 pixel and changed into black and white image. Then taking the FFT and Mean Citra value from the image. The next step is training the data, determining the target and implementation the multilayer perceptron method. The accuracy that reached by multilayer perceptron method in identifying the basic stroke of Mandarin is 59.09% with 45 node of hidden layer. The node amount of hidden layer very affect the output value. |
topic |
Basic Stroke Mandarin Language |
url |
http://csrid.potensi-utama.ac.id/ojs/index.php/CSRID/article/view/61 |
work_keys_str_mv |
AT dewi identifikasigoresandasarmandarindenganmetodemultilayerperceptron |
_version_ |
1726009933856505856 |