Diagnosing of automotive alternators on thermal state

Since automotive alternators serve as the primary sources of power onboard of vehicles, the online diagnostics of technical conditions thereof is a relevant task. An advantage of temperature as a diagnostic parameter is sensitivity to most faults at the early stage of their development. Physical mod...

Full description

Bibliographic Details
Main Author: Puzakov Andrey
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:MATEC Web of Conferences
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2019/47/matecconf_icmtmte18_00005.pdf
Description
Summary:Since automotive alternators serve as the primary sources of power onboard of vehicles, the online diagnostics of technical conditions thereof is a relevant task. An advantage of temperature as a diagnostic parameter is sensitivity to most faults at the early stage of their development. Physical modeling of faults (stator one-line open fault, stator turn-to-turn short circuit, stator winding phase-to-phase short circuit, circuit opening and short circuit of rectifier diodes) has been done by forced increase (decrease) of electrical resistance between alternator elements. In order to measure alternator temperature, it has been brought to steady thermal state within 20 minutes. It has been found that the alternator temperature in case of faults can increase the rated temperature by 10-30 °С even when the alternator operates without load. An algorithm has been developed to find alternator faults by evaluating the thermal state thereof, which can become a basis of an onboard automatic online diagnosing system of an automotive alternator.
ISSN:2261-236X