FDTD Stability: Critical Time Increment

A new approach suitable for determination of the maximal stable timeincrement for the Finite-Difference Time-Domain (FDTD) algorithm incommon curvilinear coordinates, for general mesh shapes and certaintypes of boundaries is presented. The maximal time incrementcorresponds to a characteristic value...

Full description

Bibliographic Details
Main Authors: Z. Skvor, L. Pauk
Format: Article
Language:English
Published: Spolecnost pro radioelektronicke inzenyrstvi 2003-06-01
Series:Radioengineering
Online Access:http://www.radioeng.cz/fulltexts/2003/03_02_16_22.pdf
id doaj-8717610422ff4ee896d24c312fe38e5a
record_format Article
spelling doaj-8717610422ff4ee896d24c312fe38e5a2020-11-25T01:44:19ZengSpolecnost pro radioelektronicke inzenyrstviRadioengineering1210-25122003-06-011221622FDTD Stability: Critical Time IncrementZ. SkvorL. PaukA new approach suitable for determination of the maximal stable timeincrement for the Finite-Difference Time-Domain (FDTD) algorithm incommon curvilinear coordinates, for general mesh shapes and certaintypes of boundaries is presented. The maximal time incrementcorresponds to a characteristic value of a Helmholz equation that issolved by a finite-difference (FD) method. If this method uses exactlythe same discretization as the given FDTD method (same mesh, boundaryconditions, order of precision etc.), the maximal stable time incrementis obtained from the highest characteristic value. The FD system issolved by an iterative method, which uses only slightly alteredoriginal FDTD formulae. The Courant condition yields a stable timeincrement, but in certain cases the maximum increment is slightlygreater [2].www.radioeng.cz/fulltexts/2003/03_02_16_22.pdf
collection DOAJ
language English
format Article
sources DOAJ
author Z. Skvor
L. Pauk
spellingShingle Z. Skvor
L. Pauk
FDTD Stability: Critical Time Increment
Radioengineering
author_facet Z. Skvor
L. Pauk
author_sort Z. Skvor
title FDTD Stability: Critical Time Increment
title_short FDTD Stability: Critical Time Increment
title_full FDTD Stability: Critical Time Increment
title_fullStr FDTD Stability: Critical Time Increment
title_full_unstemmed FDTD Stability: Critical Time Increment
title_sort fdtd stability: critical time increment
publisher Spolecnost pro radioelektronicke inzenyrstvi
series Radioengineering
issn 1210-2512
publishDate 2003-06-01
description A new approach suitable for determination of the maximal stable timeincrement for the Finite-Difference Time-Domain (FDTD) algorithm incommon curvilinear coordinates, for general mesh shapes and certaintypes of boundaries is presented. The maximal time incrementcorresponds to a characteristic value of a Helmholz equation that issolved by a finite-difference (FD) method. If this method uses exactlythe same discretization as the given FDTD method (same mesh, boundaryconditions, order of precision etc.), the maximal stable time incrementis obtained from the highest characteristic value. The FD system issolved by an iterative method, which uses only slightly alteredoriginal FDTD formulae. The Courant condition yields a stable timeincrement, but in certain cases the maximum increment is slightlygreater [2].
url http://www.radioeng.cz/fulltexts/2003/03_02_16_22.pdf
work_keys_str_mv AT zskvor fdtdstabilitycriticaltimeincrement
AT lpauk fdtdstabilitycriticaltimeincrement
_version_ 1725029311463817216