Hyperlipidemic Conditions Impact Force-Induced Inflammatory Response of Human Periodontal Ligament Fibroblasts Concomitantly Challenged with <i>P. gingivalis</i>-LPS

In obese patients, enhanced serum levels of free fatty acids (FFA), such as palmitate (PA) or oleate (OA), are associated with an increase in systemic inflammatory markers. Bacterial infection during periodontal disease also promotes local and systemic low-grade inflammation. How both conditions con...

Full description

Bibliographic Details
Main Authors: Judit Symmank, Sophie Appel, Jana Asisa Bastian, Isabel Knaup, Jana Marciniak, Christoph-Ludwig Hennig, Annika Döding, Ulrike Schulze-Späte, Collin Jacobs, Michael Wolf
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/22/11/6069
Description
Summary:In obese patients, enhanced serum levels of free fatty acids (FFA), such as palmitate (PA) or oleate (OA), are associated with an increase in systemic inflammatory markers. Bacterial infection during periodontal disease also promotes local and systemic low-grade inflammation. How both conditions concomitantly impact tooth movement is largely unknown. Thus, the aim of this study was to address the changes in cytokine expression and the secretion of human periodontal ligament fibroblasts (HPdLF) due to hyperlipidemic conditions, when additionally stressed by bacterial and mechanical stimuli. To investigate the impact of obesity-related hyperlipidemic FFA levels on HPdLF, cells were treated with 200 µM PA or OA prior to the application of 2 g/cm<sup>2</sup> compressive force. To further determine the additive impact of bacterial infection, HPdLF were stimulated with lipopolysaccharides (LPS) obtained from <i>Porphyromonas gingivalis</i>. In mechanically compressed HPdLF, PA enhanced <i>COX2</i> expression and PGE2 secretion. When mechanically stressed HPdLF were additionally stimulated with LPS, the PGE2 and IL6 secretion, as well as monocyte adhesion, were further increased in PA-treated cultures. Our data emphasize that a hyperlipidemic condition enhances the susceptibility of HPdLF to an excessive inflammatory response to compressive forces, when cells are concomitantly exposed to bacterial components.
ISSN:1661-6596
1422-0067