Characterization of Nrf1b, a novel isoform of the nuclear factor-erythroid-2 related transcription factor-1 that activates antioxidant response element-regulated genes.

Nuclear factor E2-related factor 1 (Nrf1) is a basic leucine zipper transcription factor that plays an important role in the activation of cytoprotective genes through the antioxidant response elements. The previously characterized long isoform of Nrf1 (Nrf1a) is targeted to the endoplasmic reticulu...

Full description

Bibliographic Details
Main Authors: Eric K Kwong, Kyung-Mi Kim, Patrick J Penalosa, Jefferson Y Chan
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3483171?pdf=render
Description
Summary:Nuclear factor E2-related factor 1 (Nrf1) is a basic leucine zipper transcription factor that plays an important role in the activation of cytoprotective genes through the antioxidant response elements. The previously characterized long isoform of Nrf1 (Nrf1a) is targeted to the endoplasmic reticulum and accumulates in the nucleus in response to activating signals. Here we characterized a novel Nrf1 protein isoform (Nrf1b) generated through an alternative promoter and first exon that lacks the ER targeting domain of Nrf1a. The 5'-flanking region of Nrf1b directed high levels of luciferase reporter expression in cells. RT-PCR and Western blotting showed Nrf1b is widely expressed in various cell lines and mouse tissues. Immunoblot analysis of subcellular fractions and imaging of green fluorescence protein (GFP)-tagged Nrf1b demonstrate Nrf1b is constitutively localized to the nucleus. Nrf1b can activate GAL4-dependent transcription when fused to the heterologous GAL4 DNA-binding domain. Gel-shift and coimmunoprecipitation experiments demonstrate that Nrf1b forms a complex with MafG, and expression of Nrf1b activates the expression of antioxidant response element containing reporters and genes in cells. These results suggest Nrf1b is targeted to the nucleus where it activates ARE-driven genes and may play a role in modulating antioxidant response elements.
ISSN:1932-6203