Capitulation of the 2-ideal classes of type (2, 2, 2) of some quartic cyclic number fields

Let p≡3(mod4){p\equiv 3\pmod{4}} and l≡5(mod8){l\equiv 5\pmod{8}} be different primes such that pl=1{\frac{p}{l}=1} and 2p=pl4{\frac{2}{p}=\frac{p}{l}_{4}}. Put k=ℚ⁢(l){k=\mathbb{Q}(\sqrt{l})}, and denote by ϵ its fundamental unit. Set K=k⁢(-2⁢p⁢ϵ⁢l){K=k(\sqrt{-2p\epsilon\sqrt{l}})}, and let K2(1){K...

Full description

Bibliographic Details
Main Authors: Azizi Abdelmalek, Jerrari Idriss, Zekhnini Abdelkader, Talbi Mohammed
Format: Article
Language:English
Published: De Gruyter 2019-03-01
Series:Journal of Mathematical Cryptology
Subjects:
Online Access:https://doi.org/10.1515/jmc-2017-0037

Similar Items