Capitulation of the 2-ideal classes of type (2, 2, 2) of some quartic cyclic number fields
Let p≡3(mod4){p\equiv 3\pmod{4}} and l≡5(mod8){l\equiv 5\pmod{8}} be different primes such that pl=1{\frac{p}{l}=1} and 2p=pl4{\frac{2}{p}=\frac{p}{l}_{4}}. Put k=ℚ(l){k=\mathbb{Q}(\sqrt{l})}, and denote by ϵ its fundamental unit. Set K=k(-2pϵl){K=k(\sqrt{-2p\epsilon\sqrt{l}})}, and let K2(1){K...
Main Authors: | Azizi Abdelmalek, Jerrari Idriss, Zekhnini Abdelkader, Talbi Mohammed |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2019-03-01
|
Series: | Journal of Mathematical Cryptology |
Subjects: | |
Online Access: | https://doi.org/10.1515/jmc-2017-0037 |
Similar Items
-
Cycles of polynomial mappings in two variables over rings of integers in quadratic fields
by: Pezda T.
Published: (2004-04-01) -
Ramanujan’s function k(τ)=r(τ)r2(2τ) and its modularity
by: Lee Yoonjin, et al.
Published: (2020-12-01) -
On some automorphic properties of Galois traces of class invariants from generalized Weber functions of level 5
by: Eum Ick Sun, et al.
Published: (2019-12-01) -
Determinants of the Russia and Asia–Pacific energy trade
by: Farhad Taghizadeh-Hesary, et al.
Published: (2021-11-01) -
On a problem of Hasse and Ramachandra
by: Koo Ja Kyung, et al.
Published: (2019-03-01)