Lipid Metabolism in Bovine Oocytes and Early Embryos under In Vivo, In Vitro, and Stress Conditions

Lipids are a potential reservoir of energy for initial embryonic development before activation of the embryonic genome and are involved in plasma membrane biosynthesis. Excessive lipid droplet formation is detrimental to cryotolerance and is related to alterations in mitochondrial function, which li...

Full description

Bibliographic Details
Main Authors: Fabiana de Andrade Melo-Sterza, Ralf Poehland
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/22/7/3421
Description
Summary:Lipids are a potential reservoir of energy for initial embryonic development before activation of the embryonic genome and are involved in plasma membrane biosynthesis. Excessive lipid droplet formation is detrimental to cryotolerance and is related to alterations in mitochondrial function, which likely affects lipid metabolism. Increased lipid accumulation in in vitro produced embryos is a consequence of the stress during in vitro embryonic development process. There are several open questions concerning embryo lipid metabolism and developmental potential. Oocyte maturation and embryo development in vivo and in vitro may vary if the donors are subjected to any type of stress before follicle puncture because crucial changes in oocyte/embryonic metabolism occur in response to stress. However, little is known about lipid metabolism under additional stress (such as heat stress). Therefore, in this review, we aimed to update the information regarding the energy metabolism of oocytes and early bovine embryos exhibiting developmental competence, focusing on lipid metabolic pathways observed under <i>in vivo</i>, <i>in vitro</i>, and stress conditions.
ISSN:1661-6596
1422-0067