Cholesterol deposition in macrophages: foam cell formation mediated by cholesterol-enriched oxidized low density lipoprotein.

Oxidized low density lipoprotein (LDL) is thought to mediate the transformation of macrophages to cholesterol-rich foam cells. Yet convincing evidence for this process is lacking in vitro. We suggest that oxidized LDL-mediated foam cell formation is not seen in vitro because the cholesteryl ester co...

Full description

Bibliographic Details
Main Authors: P Greenspan, H Yu, F Mao, R L Gutman
Format: Article
Language:English
Published: Elsevier 1997-01-01
Series:Journal of Lipid Research
Online Access:http://www.sciencedirect.com/science/article/pii/S0022227520372795
id doaj-86ad38399cd949cb897787367767d350
record_format Article
spelling doaj-86ad38399cd949cb897787367767d3502021-04-26T05:48:13ZengElsevierJournal of Lipid Research0022-22751997-01-01381101109Cholesterol deposition in macrophages: foam cell formation mediated by cholesterol-enriched oxidized low density lipoprotein.P Greenspan0H Yu1F Mao2R L Gutman3Department of Pharmacology and Toxicology, College of Pharmacy, University of Georgia, Athens 30602-2356, USA.Department of Pharmacology and Toxicology, College of Pharmacy, University of Georgia, Athens 30602-2356, USA.Department of Pharmacology and Toxicology, College of Pharmacy, University of Georgia, Athens 30602-2356, USA.Department of Pharmacology and Toxicology, College of Pharmacy, University of Georgia, Athens 30602-2356, USA.Oxidized low density lipoprotein (LDL) is thought to mediate the transformation of macrophages to cholesterol-rich foam cells. Yet convincing evidence for this process is lacking in vitro. We suggest that oxidized LDL-mediated foam cell formation is not seen in vitro because the cholesteryl ester content of LDL particles (oxidized in the presence of transition metals) is dramatically reduced. Thus, if oxidized LDL could be cholesterol-enriched prior to its addition to macrophages, this lipoprotein would be made more capable of inducing the cellular deposition of cholesteryl esters. When we enriched cupric sulfate-oxidized LDL with cholesterol by incubation of this lipoprotein with unesterified cholesterol/phosphatidylcholine liposomes and added it to mouse peritoneal macrophage cultures, we found that: a) the enrichment of oxidized LDL with cholesterol did not alter the extent of oxidized LDL degradation; b) the cells accumulated massive amounts of cholesteryl ester (148 microg/mg cell protein) and unesterified cholesterol (260 microg/mg cell protein) after 24 h of incubation; and c) Sephacryl S-1000 chromatography of the cholesterol-enriched oxidized LDL verified the formation of large oxidized LDL-unesterified cholesterol/phosphatidylcholine complexes. These results demonstrate that oxidized LDL, when cholesterol-enriched, can mediate the formation of macrophage foam cells in culturehttp://www.sciencedirect.com/science/article/pii/S0022227520372795
collection DOAJ
language English
format Article
sources DOAJ
author P Greenspan
H Yu
F Mao
R L Gutman
spellingShingle P Greenspan
H Yu
F Mao
R L Gutman
Cholesterol deposition in macrophages: foam cell formation mediated by cholesterol-enriched oxidized low density lipoprotein.
Journal of Lipid Research
author_facet P Greenspan
H Yu
F Mao
R L Gutman
author_sort P Greenspan
title Cholesterol deposition in macrophages: foam cell formation mediated by cholesterol-enriched oxidized low density lipoprotein.
title_short Cholesterol deposition in macrophages: foam cell formation mediated by cholesterol-enriched oxidized low density lipoprotein.
title_full Cholesterol deposition in macrophages: foam cell formation mediated by cholesterol-enriched oxidized low density lipoprotein.
title_fullStr Cholesterol deposition in macrophages: foam cell formation mediated by cholesterol-enriched oxidized low density lipoprotein.
title_full_unstemmed Cholesterol deposition in macrophages: foam cell formation mediated by cholesterol-enriched oxidized low density lipoprotein.
title_sort cholesterol deposition in macrophages: foam cell formation mediated by cholesterol-enriched oxidized low density lipoprotein.
publisher Elsevier
series Journal of Lipid Research
issn 0022-2275
publishDate 1997-01-01
description Oxidized low density lipoprotein (LDL) is thought to mediate the transformation of macrophages to cholesterol-rich foam cells. Yet convincing evidence for this process is lacking in vitro. We suggest that oxidized LDL-mediated foam cell formation is not seen in vitro because the cholesteryl ester content of LDL particles (oxidized in the presence of transition metals) is dramatically reduced. Thus, if oxidized LDL could be cholesterol-enriched prior to its addition to macrophages, this lipoprotein would be made more capable of inducing the cellular deposition of cholesteryl esters. When we enriched cupric sulfate-oxidized LDL with cholesterol by incubation of this lipoprotein with unesterified cholesterol/phosphatidylcholine liposomes and added it to mouse peritoneal macrophage cultures, we found that: a) the enrichment of oxidized LDL with cholesterol did not alter the extent of oxidized LDL degradation; b) the cells accumulated massive amounts of cholesteryl ester (148 microg/mg cell protein) and unesterified cholesterol (260 microg/mg cell protein) after 24 h of incubation; and c) Sephacryl S-1000 chromatography of the cholesterol-enriched oxidized LDL verified the formation of large oxidized LDL-unesterified cholesterol/phosphatidylcholine complexes. These results demonstrate that oxidized LDL, when cholesterol-enriched, can mediate the formation of macrophage foam cells in culture
url http://www.sciencedirect.com/science/article/pii/S0022227520372795
work_keys_str_mv AT pgreenspan cholesteroldepositioninmacrophagesfoamcellformationmediatedbycholesterolenrichedoxidizedlowdensitylipoprotein
AT hyu cholesteroldepositioninmacrophagesfoamcellformationmediatedbycholesterolenrichedoxidizedlowdensitylipoprotein
AT fmao cholesteroldepositioninmacrophagesfoamcellformationmediatedbycholesterolenrichedoxidizedlowdensitylipoprotein
AT rlgutman cholesteroldepositioninmacrophagesfoamcellformationmediatedbycholesterolenrichedoxidizedlowdensitylipoprotein
_version_ 1721508678931054592