Regarding the evaluation of the solid rocket propellant response function to pressure coupling
High frequency combustion instabilities imply a major risk for the solid rocket motor stableworking and they are directly linked to the propellant response to chamber pressure coupling. Thisarticle discusses a laboratory testing method for the measurement and evaluation of the pressurecoupled respon...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
National Institute for Aerospace Research “Elie Carafoli” - INCAS
2011-03-01
|
Series: | INCAS Bulletin |
Subjects: | |
Online Access: | http://bulletin.incas.ro/files/doru_safta_v3is1_full.pdf |
Summary: | High frequency combustion instabilities imply a major risk for the solid rocket motor stableworking and they are directly linked to the propellant response to chamber pressure coupling. Thisarticle discusses a laboratory testing method for the measurement and evaluation of the pressurecoupled response for non-metalized propellants in a first stage. Experimental researches were donewith an adequate setup, built and improved in our lab, able to evaluate the propellant response byinterpreting the pressure oscillations damping in terms of propellant response. Our paper aims atdefining a linearized one-dimensional flow study model to analyze the disturbed operation of the solidpropellant rocket motors. Based on the applied model we can assert that the real part of propellantresponse is a function of the oscillations damping, acoustic energy in the motor chamber and variouslosses in the burning chamber. The imaginary part of propellant response mainly depends on thenormalized pulsation, on the burning chamber gas column and on the pressure oscillations frequency.Our research purpose was obviously to minimize the risk of the combustion instabilities effects on therocket motors working, by experimental investigations using jet modulating techniques and sustainedby an interesting study model based on the perturbation method. |
---|---|
ISSN: | 2066-8201 2247-4528 |