Proof of principle for Ramsey-type gravity resonance spectroscopy with qBounce

Ultracold neutrons (UCNs) are formidable probes in precision tests of gravity. With their negligible electric charge, dielectric moment, and polarizability they naturally evade some of the problems plaguing gravity experiments with atomic or macroscopic test bodies. Taking advantage of this fact, th...

Full description

Bibliographic Details
Main Authors: Sedmik René I.P., Bosina Joachim, Achatz Lukas, Geltenbort Peter, Heiß Manuel, Ivanov Andrey N., Jenke Tobias, Micko Jakob, Pitschmann Mario, Rechberger Tobias, Schmidt Patrick, Thalhammer Martin, Abele Hartmut
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2019/24/epjconf-ppns2019_05004.pdf
id doaj-8678aa476c6c4bdd99cbb0aa1d49f966
record_format Article
spelling doaj-8678aa476c6c4bdd99cbb0aa1d49f9662021-08-02T08:33:21ZengEDP SciencesEPJ Web of Conferences2100-014X2019-01-012190500410.1051/epjconf/201921905004epjconf-ppns2019_05004Proof of principle for Ramsey-type gravity resonance spectroscopy with qBounceSedmik René I.P.0Bosina JoachimAchatz Lukas1Geltenbort Peter2Heiß Manuel3Ivanov Andrey N.4Jenke Tobias5Micko JakobPitschmann Mario6Rechberger Tobias7Schmidt Patrick8Thalhammer MartinAbele Hartmut9Technische Universität Wien, AtominstitutTechnische Universität Wien, AtominstitutInstitut Laue LangevinTechnische Universität Wien, AtominstitutTechnische Universität Wien, AtominstitutInstitut Laue LangevinTechnische Universität Wien, AtominstitutTechnische Universität Wien, AtominstitutTechnische Universität Wien, AtominstitutTechnische Universität Wien, AtominstitutUltracold neutrons (UCNs) are formidable probes in precision tests of gravity. With their negligible electric charge, dielectric moment, and polarizability they naturally evade some of the problems plaguing gravity experiments with atomic or macroscopic test bodies. Taking advantage of this fact, the qBounce collaboration has developed a technique – gravity resonance spectroscopy (GRS) – to study bound quantum states of UCN in the gravity field of the Earth. This technique is used as a high-precision tool to search for hypothetical Non-Newtonian gravity on the micrometer scale. In the present article, we describe the recently commissioned Ramsey-type GRS setup, give an unambiguous proof of principle, and discuss possible measurements that will be performed.https://www.epj-conferences.org/articles/epjconf/pdf/2019/24/epjconf-ppns2019_05004.pdf
collection DOAJ
language English
format Article
sources DOAJ
author Sedmik René I.P.
Bosina Joachim
Achatz Lukas
Geltenbort Peter
Heiß Manuel
Ivanov Andrey N.
Jenke Tobias
Micko Jakob
Pitschmann Mario
Rechberger Tobias
Schmidt Patrick
Thalhammer Martin
Abele Hartmut
spellingShingle Sedmik René I.P.
Bosina Joachim
Achatz Lukas
Geltenbort Peter
Heiß Manuel
Ivanov Andrey N.
Jenke Tobias
Micko Jakob
Pitschmann Mario
Rechberger Tobias
Schmidt Patrick
Thalhammer Martin
Abele Hartmut
Proof of principle for Ramsey-type gravity resonance spectroscopy with qBounce
EPJ Web of Conferences
author_facet Sedmik René I.P.
Bosina Joachim
Achatz Lukas
Geltenbort Peter
Heiß Manuel
Ivanov Andrey N.
Jenke Tobias
Micko Jakob
Pitschmann Mario
Rechberger Tobias
Schmidt Patrick
Thalhammer Martin
Abele Hartmut
author_sort Sedmik René I.P.
title Proof of principle for Ramsey-type gravity resonance spectroscopy with qBounce
title_short Proof of principle for Ramsey-type gravity resonance spectroscopy with qBounce
title_full Proof of principle for Ramsey-type gravity resonance spectroscopy with qBounce
title_fullStr Proof of principle for Ramsey-type gravity resonance spectroscopy with qBounce
title_full_unstemmed Proof of principle for Ramsey-type gravity resonance spectroscopy with qBounce
title_sort proof of principle for ramsey-type gravity resonance spectroscopy with qbounce
publisher EDP Sciences
series EPJ Web of Conferences
issn 2100-014X
publishDate 2019-01-01
description Ultracold neutrons (UCNs) are formidable probes in precision tests of gravity. With their negligible electric charge, dielectric moment, and polarizability they naturally evade some of the problems plaguing gravity experiments with atomic or macroscopic test bodies. Taking advantage of this fact, the qBounce collaboration has developed a technique – gravity resonance spectroscopy (GRS) – to study bound quantum states of UCN in the gravity field of the Earth. This technique is used as a high-precision tool to search for hypothetical Non-Newtonian gravity on the micrometer scale. In the present article, we describe the recently commissioned Ramsey-type GRS setup, give an unambiguous proof of principle, and discuss possible measurements that will be performed.
url https://www.epj-conferences.org/articles/epjconf/pdf/2019/24/epjconf-ppns2019_05004.pdf
work_keys_str_mv AT sedmikreneip proofofprincipleforramseytypegravityresonancespectroscopywithqbounce
AT bosinajoachim proofofprincipleforramseytypegravityresonancespectroscopywithqbounce
AT achatzlukas proofofprincipleforramseytypegravityresonancespectroscopywithqbounce
AT geltenbortpeter proofofprincipleforramseytypegravityresonancespectroscopywithqbounce
AT heißmanuel proofofprincipleforramseytypegravityresonancespectroscopywithqbounce
AT ivanovandreyn proofofprincipleforramseytypegravityresonancespectroscopywithqbounce
AT jenketobias proofofprincipleforramseytypegravityresonancespectroscopywithqbounce
AT mickojakob proofofprincipleforramseytypegravityresonancespectroscopywithqbounce
AT pitschmannmario proofofprincipleforramseytypegravityresonancespectroscopywithqbounce
AT rechbergertobias proofofprincipleforramseytypegravityresonancespectroscopywithqbounce
AT schmidtpatrick proofofprincipleforramseytypegravityresonancespectroscopywithqbounce
AT thalhammermartin proofofprincipleforramseytypegravityresonancespectroscopywithqbounce
AT abelehartmut proofofprincipleforramseytypegravityresonancespectroscopywithqbounce
_version_ 1721238067449167872