Bahadur representations of M-estimators and their applications in general linear models
Abstract Consider the linear regression model yi=xiTβ+ei,i=1,2,…,n, $$y_{i}=x_{i}^{T}\beta+e_{i},\quad i=1,2, \ldots,n, $$ where ei=g(…,εi−1,εi) $e_{i}=g(\ldots,\varepsilon_{i-1},\varepsilon_{i})$ are general dependence errors. The Bahadur representations of M-estimators of the parameter β are given...
Main Author: | Hongchang Hu |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-05-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-018-1715-x |
Similar Items
-
Asymptotics for L 1 $L_{1}$ -wavelet method for nonparametric regression
by: Xingcai Zhou, et al.
Published: (2020-09-01) -
Bahadur Efficiencies for Statistics of Truncated P-value Combination Methods
by: Chen, Xiaohui
Published: (2018) -
Contribution à l'étude des M-estimateurs polynômes locaux
by: Sabbah, Camille
Published: (2010) -
Cramér-Chernoff Theorem for L1-norm in Kernel Density Estimator for Two Independent Samples Teorema de Cramér-Chernoff para la norma L1 del estimador núcleo para dos muestras independientes
by: TERESA LÓPEZ, et al.
Published: (2009-01-01) -
Surfaces quantile : propriétés, convergences et applications
by: Ahidar-Coutrix, Adil
Published: (2015)