Elucidation of interactive effects of synthesis conditions on the characteristics of mesoporous silicas templated using polyoxide surfactant

A series of mesoporous silicas (MS-1–MS-9) were synthesized at different gel compositions using a triblock copolymer (TCP), poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide), as the surfactant. The interactive effects of acidity, the contents of tetraethyl orthosilicate (TEOS) and the...

Full description

Bibliographic Details
Main Author: A.Z. Abdullah, A.H. Kamaruddin, N. Razali, H. Abdullah and S. Bhatia
Format: Article
Language:English
Published: Taylor & Francis Group 2007-01-01
Series:Science and Technology of Advanced Materials
Online Access:http://www.iop.org/EJ/abstract/1468-6996/8/4/A03
Description
Summary:A series of mesoporous silicas (MS-1–MS-9) were synthesized at different gel compositions using a triblock copolymer (TCP), poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide), as the surfactant. The interactive effects of acidity, the contents of tetraethyl orthosilicate (TEOS) and the surfactant, and the gelling temperature on the characteristics of the final material were simultaneously characterized. Increasing acidity favored mesopore formation. A material with a surface area of 760 m2/g, mostly in the mesoporous range, was obtained at 1.0(TEOS):0.017(TCP):7.3HCl:115.7H2O. Mesopore formation was predominantly determined by the TEOS:TCP ratio and was promoted with its increase from 1.56:1 to 2.09:1. A further increase to 2.61:1 was detrimental. Whereas increasing the TCP content to 3.5% w/w improved micellization, a further increase to 4.6% should be avoided. Mesoporous silicas showed low crystallinity but a high degree of hexagonal mesoscopic organization. The weak surface acidity was attributed to surface silanols, the number of which was proportional to mesoporosity.
ISSN:1468-6996
1878-5514