Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silica
<p>Divergent ice nucleation (IN) efficiencies of quartz, an important component of atmospheric mineral dust, have been reported in previous studies. We show here that quartz particles obtain their IN activity from milling and that quartz aged in water loses most of its IN efficiency relative t...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-05-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/19/6035/2019/acp-19-6035-2019.pdf |
id |
doaj-86610757600c4b4287d7a8cc04a0a0ac |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. Kumar C. Marcolli T. Peter |
spellingShingle |
A. Kumar C. Marcolli T. Peter Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silica Atmospheric Chemistry and Physics |
author_facet |
A. Kumar C. Marcolli T. Peter |
author_sort |
A. Kumar |
title |
Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silica |
title_short |
Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silica |
title_full |
Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silica |
title_fullStr |
Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silica |
title_full_unstemmed |
Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silica |
title_sort |
ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – part 2: quartz and amorphous silica |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2019-05-01 |
description |
<p>Divergent ice nucleation (IN) efficiencies of quartz, an important component
of atmospheric mineral dust, have been reported in previous studies. We show
here that quartz particles obtain their IN activity from milling and that
quartz aged in water loses most of its IN efficiency relative to freshly
milled quartz. Since most studies so far reported IN activities of commercial
quartz dusts that were milled already by the manufacturer, IN active samples
prevailed. Also, the quartz surface – much in contrast to that of feldspars
– is not prone to ammonia-induced IN enhancement. In detail we investigate
the influence of solutes on the IN efficiency of various silica
(<span class="inline-formula">SiO<sub>2</sub></span>) particles (crystalline and amorphous) with special focus on
quartz. We performed immersion freezing experiments and relate the observed
variability in IN activity to the influence of milling, the aging time and to
the exposure conditions since milling. Immersion freezing with silica
particles suspended in pure water or aqueous solutions of <span class="inline-formula">NH<sub>3</sub></span>,
<span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">NH<sub>4</sub>HSO<sub>4</sub></span>, <span class="inline-formula">Na<sub>2</sub>SO<sub>4</sub></span> and
NaOH, with solute concentrations corresponding to water activities
<span class="inline-formula"><i>a</i><sub>w</sub>=0.9</span>–1.0, were investigated in emulsified droplets by means
of differential scanning calorimetry (DSC) and analyzed in terms of the onset
temperature of the heterogeneous freezing signal <span class="inline-formula"><i>T</i><sub>het</sub></span> and the
heterogeneously frozen water volume fraction <span class="inline-formula"><i>F</i><sub>het</sub></span>. Quartz
particles, which originate from milling coarse samples, show a strong
heterogeneous freezing peak in pure water with <span class="inline-formula"><i>T</i><sub>het</sub></span> equal to
247–251 K. This IN
activity disappears almost completely after aging for 7 months in pure water
in a glass vial. During this time quartz slowly grew by incorporating silicic
acid leached from the glass vial. Conversely, the synthesized amorphous
silica samples show no discernable heterogeneous freezing signal unless they
were milled. This implies that defects provide IN activity to silica
surfaces, whereas the IN activity of a natural quartz surface is negligible,
when it grew under near-equilibrium conditions. For suspensions containing
milled quartz and the solutes <span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">NH<sub>4</sub>HSO<sub>4</sub></span>
or <span class="inline-formula">Na<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula"><i>T</i><sub>het</sub></span> approximately follows
<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>T</mi><mi mathvariant="normal">het</mi><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></msubsup><mo>(</mo><msub><mi>a</mi><mi mathvariant="normal">w</mi></msub><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="21pt" class="svg-formula" dspmath="mathimg" md5hash="1d8fcd7e9a681df856ae697114c01ebf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00001.svg" width="49pt" height="21pt" src="acp-19-6035-2019-ie00001.png"/></svg:svg></span></span>, the
heterogeneous freezing onset temperatures that obey <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="95b5e80a0a3574ef6190a18aa5d5488f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00002.svg" width="28pt" height="16pt" src="acp-19-6035-2019-ie00002.png"/></svg:svg></span></span> criterion, i.e., <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>T</mi><mi mathvariant="normal">het</mi><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></msubsup><mo>(</mo><msub><mi>a</mi><mi mathvariant="normal">w</mi></msub><mo>)</mo><mo>=</mo><msub><mi>T</mi><mi mathvariant="normal">melt</mi></msub><mo>(</mo><msub><mi>a</mi><mi mathvariant="normal">w</mi></msub><mo>+</mo><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="139pt" height="21pt" class="svg-formula" dspmath="mathimg" md5hash="d43ef2ca3c6a0c7e8785a18e6ed91733"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00003.svg" width="139pt" height="21pt" src="acp-19-6035-2019-ie00003.png"/></svg:svg></span></span> with <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="24d0d048df71ca5c23f2acbe6083b91d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00004.svg" width="28pt" height="16pt" src="acp-19-6035-2019-ie00004.png"/></svg:svg></span></span> being
a constant offset with respect to the ice melting point curve, similar to
homogeneous IN. This water-activity-based description is expected to hold
when the mineral surface is not altered by the presence of the solutes. On
the other hand, we observe a slight enhancement in <span class="inline-formula"><i>F</i><sub>het</sub></span> in the
presence of these solutes, implying that the compliance with the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="aed39b8794244ad8b5a1723f858a4f31"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00005.svg" width="28pt" height="16pt" src="acp-19-6035-2019-ie00005.png"/></svg:svg></span></span> criterion does not necessarily imply constant
<span class="inline-formula"><i>F</i><sub>het</sub></span>. In contrast to the sulfates, dilute solutions of
<span class="inline-formula">NH<sub>3</sub></span> or NaOH (molality <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>≥</mo><mn mathvariant="normal">5</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">4</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7da40eebe763b1e39349b261c6f19929"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00006.svg" width="52pt" height="14pt" src="acp-19-6035-2019-ie00006.png"/></svg:svg></span></span> mol kg<span class="inline-formula"><sup>−1</sup></span>) reveal
<span class="inline-formula"><i>T</i><sub>het</sub></span> by 3–8 K lower than <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M25" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>T</mi><mi mathvariant="normal">het</mi><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></msubsup><mo>(</mo><msub><mi>a</mi><mi mathvariant="normal">w</mi></msub><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="21pt" class="svg-formula" dspmath="mathimg" md5hash="7553570b3707d803d92a0e6fc123316a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00007.svg" width="49pt" height="21pt" src="acp-19-6035-2019-ie00007.png"/></svg:svg></span></span>, indicating a significant impact
on the mineral surface. The lowering of <span class="inline-formula"><i>T</i><sub>het</sub></span> of quartz suspended
in dilute <span class="inline-formula">NH<sub>3</sub></span> solutions is opposite to the distinct increase in
<span class="inline-formula"><i>T</i><sub>het</sub></span> that we found in emulsion freezing experiments with
aluminosilicates, namely feldspars, kaolinite, gibbsite and micas. We ascribe
this decrease in IN activity to the increased dissolution of quartz under
alkaline conditions. The defects that constitute the active sites appear to
be more susceptible to dissolution and therefore disappear first on a
dissolving surface.</p> |
url |
https://www.atmos-chem-phys.net/19/6035/2019/acp-19-6035-2019.pdf |
work_keys_str_mv |
AT akumar icenucleationactivityofsilicatesandaluminosilicatesinpurewaterandaqueoussolutionspart2quartzandamorphoussilica AT cmarcolli icenucleationactivityofsilicatesandaluminosilicatesinpurewaterandaqueoussolutionspart2quartzandamorphoussilica AT tpeter icenucleationactivityofsilicatesandaluminosilicatesinpurewaterandaqueoussolutionspart2quartzandamorphoussilica |
_version_ |
1725877171105300480 |
spelling |
doaj-86610757600c4b4287d7a8cc04a0a0ac2020-11-24T21:52:03ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-05-01196035605810.5194/acp-19-6035-2019Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silicaA. KumarC. MarcolliT. Peter<p>Divergent ice nucleation (IN) efficiencies of quartz, an important component of atmospheric mineral dust, have been reported in previous studies. We show here that quartz particles obtain their IN activity from milling and that quartz aged in water loses most of its IN efficiency relative to freshly milled quartz. Since most studies so far reported IN activities of commercial quartz dusts that were milled already by the manufacturer, IN active samples prevailed. Also, the quartz surface – much in contrast to that of feldspars – is not prone to ammonia-induced IN enhancement. In detail we investigate the influence of solutes on the IN efficiency of various silica (<span class="inline-formula">SiO<sub>2</sub></span>) particles (crystalline and amorphous) with special focus on quartz. We performed immersion freezing experiments and relate the observed variability in IN activity to the influence of milling, the aging time and to the exposure conditions since milling. Immersion freezing with silica particles suspended in pure water or aqueous solutions of <span class="inline-formula">NH<sub>3</sub></span>, <span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">NH<sub>4</sub>HSO<sub>4</sub></span>, <span class="inline-formula">Na<sub>2</sub>SO<sub>4</sub></span> and NaOH, with solute concentrations corresponding to water activities <span class="inline-formula"><i>a</i><sub>w</sub>=0.9</span>–1.0, were investigated in emulsified droplets by means of differential scanning calorimetry (DSC) and analyzed in terms of the onset temperature of the heterogeneous freezing signal <span class="inline-formula"><i>T</i><sub>het</sub></span> and the heterogeneously frozen water volume fraction <span class="inline-formula"><i>F</i><sub>het</sub></span>. Quartz particles, which originate from milling coarse samples, show a strong heterogeneous freezing peak in pure water with <span class="inline-formula"><i>T</i><sub>het</sub></span> equal to 247–251 K. This IN activity disappears almost completely after aging for 7 months in pure water in a glass vial. During this time quartz slowly grew by incorporating silicic acid leached from the glass vial. Conversely, the synthesized amorphous silica samples show no discernable heterogeneous freezing signal unless they were milled. This implies that defects provide IN activity to silica surfaces, whereas the IN activity of a natural quartz surface is negligible, when it grew under near-equilibrium conditions. For suspensions containing milled quartz and the solutes <span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">NH<sub>4</sub>HSO<sub>4</sub></span> or <span class="inline-formula">Na<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula"><i>T</i><sub>het</sub></span> approximately follows <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>T</mi><mi mathvariant="normal">het</mi><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></msubsup><mo>(</mo><msub><mi>a</mi><mi mathvariant="normal">w</mi></msub><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="21pt" class="svg-formula" dspmath="mathimg" md5hash="1d8fcd7e9a681df856ae697114c01ebf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00001.svg" width="49pt" height="21pt" src="acp-19-6035-2019-ie00001.png"/></svg:svg></span></span>, the heterogeneous freezing onset temperatures that obey <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="95b5e80a0a3574ef6190a18aa5d5488f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00002.svg" width="28pt" height="16pt" src="acp-19-6035-2019-ie00002.png"/></svg:svg></span></span> criterion, i.e., <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>T</mi><mi mathvariant="normal">het</mi><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></msubsup><mo>(</mo><msub><mi>a</mi><mi mathvariant="normal">w</mi></msub><mo>)</mo><mo>=</mo><msub><mi>T</mi><mi mathvariant="normal">melt</mi></msub><mo>(</mo><msub><mi>a</mi><mi mathvariant="normal">w</mi></msub><mo>+</mo><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="139pt" height="21pt" class="svg-formula" dspmath="mathimg" md5hash="d43ef2ca3c6a0c7e8785a18e6ed91733"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00003.svg" width="139pt" height="21pt" src="acp-19-6035-2019-ie00003.png"/></svg:svg></span></span> with <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="24d0d048df71ca5c23f2acbe6083b91d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00004.svg" width="28pt" height="16pt" src="acp-19-6035-2019-ie00004.png"/></svg:svg></span></span> being a constant offset with respect to the ice melting point curve, similar to homogeneous IN. This water-activity-based description is expected to hold when the mineral surface is not altered by the presence of the solutes. On the other hand, we observe a slight enhancement in <span class="inline-formula"><i>F</i><sub>het</sub></span> in the presence of these solutes, implying that the compliance with the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="aed39b8794244ad8b5a1723f858a4f31"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00005.svg" width="28pt" height="16pt" src="acp-19-6035-2019-ie00005.png"/></svg:svg></span></span> criterion does not necessarily imply constant <span class="inline-formula"><i>F</i><sub>het</sub></span>. In contrast to the sulfates, dilute solutions of <span class="inline-formula">NH<sub>3</sub></span> or NaOH (molality <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>≥</mo><mn mathvariant="normal">5</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">4</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7da40eebe763b1e39349b261c6f19929"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00006.svg" width="52pt" height="14pt" src="acp-19-6035-2019-ie00006.png"/></svg:svg></span></span> mol kg<span class="inline-formula"><sup>−1</sup></span>) reveal <span class="inline-formula"><i>T</i><sub>het</sub></span> by 3–8 K lower than <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M25" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>T</mi><mi mathvariant="normal">het</mi><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></msubsup><mo>(</mo><msub><mi>a</mi><mi mathvariant="normal">w</mi></msub><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="21pt" class="svg-formula" dspmath="mathimg" md5hash="7553570b3707d803d92a0e6fc123316a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00007.svg" width="49pt" height="21pt" src="acp-19-6035-2019-ie00007.png"/></svg:svg></span></span>, indicating a significant impact on the mineral surface. The lowering of <span class="inline-formula"><i>T</i><sub>het</sub></span> of quartz suspended in dilute <span class="inline-formula">NH<sub>3</sub></span> solutions is opposite to the distinct increase in <span class="inline-formula"><i>T</i><sub>het</sub></span> that we found in emulsion freezing experiments with aluminosilicates, namely feldspars, kaolinite, gibbsite and micas. We ascribe this decrease in IN activity to the increased dissolution of quartz under alkaline conditions. The defects that constitute the active sites appear to be more susceptible to dissolution and therefore disappear first on a dissolving surface.</p>https://www.atmos-chem-phys.net/19/6035/2019/acp-19-6035-2019.pdf |