Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silica

<p>Divergent ice nucleation (IN) efficiencies of quartz, an important component of atmospheric mineral dust, have been reported in previous studies. We show here that quartz particles obtain their IN activity from milling and that quartz aged in water loses most of its IN efficiency relative t...

Full description

Bibliographic Details
Main Authors: A. Kumar, C. Marcolli, T. Peter
Format: Article
Language:English
Published: Copernicus Publications 2019-05-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/6035/2019/acp-19-6035-2019.pdf
id doaj-86610757600c4b4287d7a8cc04a0a0ac
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author A. Kumar
C. Marcolli
T. Peter
spellingShingle A. Kumar
C. Marcolli
T. Peter
Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silica
Atmospheric Chemistry and Physics
author_facet A. Kumar
C. Marcolli
T. Peter
author_sort A. Kumar
title Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silica
title_short Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silica
title_full Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silica
title_fullStr Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silica
title_full_unstemmed Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silica
title_sort ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – part 2: quartz and amorphous silica
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2019-05-01
description <p>Divergent ice nucleation (IN) efficiencies of quartz, an important component of atmospheric mineral dust, have been reported in previous studies. We show here that quartz particles obtain their IN activity from milling and that quartz aged in water loses most of its IN efficiency relative to freshly milled quartz. Since most studies so far reported IN activities of commercial quartz dusts that were milled already by the manufacturer, IN active samples prevailed. Also, the quartz surface – much in contrast to that of feldspars – is not prone to ammonia-induced IN enhancement. In detail we investigate the influence of solutes on the IN efficiency of various silica (<span class="inline-formula">SiO<sub>2</sub></span>) particles (crystalline and amorphous) with special focus on quartz. We performed immersion freezing experiments and relate the observed variability in IN activity to the influence of milling, the aging time and to the exposure conditions since milling. Immersion freezing with silica particles suspended in pure water or aqueous solutions of <span class="inline-formula">NH<sub>3</sub></span>, <span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">NH<sub>4</sub>HSO<sub>4</sub></span>, <span class="inline-formula">Na<sub>2</sub>SO<sub>4</sub></span> and NaOH, with solute concentrations corresponding to water activities <span class="inline-formula"><i>a</i><sub>w</sub>=0.9</span>–1.0, were investigated in emulsified droplets by means of differential scanning calorimetry (DSC) and analyzed in terms of the onset temperature of the heterogeneous freezing signal <span class="inline-formula"><i>T</i><sub>het</sub></span> and the heterogeneously frozen water volume fraction <span class="inline-formula"><i>F</i><sub>het</sub></span>. Quartz particles, which originate from milling coarse samples, show a strong heterogeneous freezing peak in pure water with <span class="inline-formula"><i>T</i><sub>het</sub></span> equal to 247–251&thinsp;K. This IN activity disappears almost completely after aging for 7 months in pure water in a glass vial. During this time quartz slowly grew by incorporating silicic acid leached from the glass vial. Conversely, the synthesized amorphous silica samples show no discernable heterogeneous freezing signal unless they were milled. This implies that defects provide IN activity to silica surfaces, whereas the IN activity of a natural quartz surface is negligible, when it grew under near-equilibrium conditions. For suspensions containing milled quartz and the solutes <span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">NH<sub>4</sub>HSO<sub>4</sub></span> or <span class="inline-formula">Na<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula"><i>T</i><sub>het</sub></span> approximately follows <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>T</mi><mi mathvariant="normal">het</mi><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></msubsup><mo>(</mo><msub><mi>a</mi><mi mathvariant="normal">w</mi></msub><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="21pt" class="svg-formula" dspmath="mathimg" md5hash="1d8fcd7e9a681df856ae697114c01ebf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00001.svg" width="49pt" height="21pt" src="acp-19-6035-2019-ie00001.png"/></svg:svg></span></span>, the heterogeneous freezing onset temperatures that obey <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="95b5e80a0a3574ef6190a18aa5d5488f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00002.svg" width="28pt" height="16pt" src="acp-19-6035-2019-ie00002.png"/></svg:svg></span></span> criterion, i.e., <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>T</mi><mi mathvariant="normal">het</mi><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></msubsup><mo>(</mo><msub><mi>a</mi><mi mathvariant="normal">w</mi></msub><mo>)</mo><mo>=</mo><msub><mi>T</mi><mi mathvariant="normal">melt</mi></msub><mo>(</mo><msub><mi>a</mi><mi mathvariant="normal">w</mi></msub><mo>+</mo><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="139pt" height="21pt" class="svg-formula" dspmath="mathimg" md5hash="d43ef2ca3c6a0c7e8785a18e6ed91733"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00003.svg" width="139pt" height="21pt" src="acp-19-6035-2019-ie00003.png"/></svg:svg></span></span> with <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="24d0d048df71ca5c23f2acbe6083b91d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00004.svg" width="28pt" height="16pt" src="acp-19-6035-2019-ie00004.png"/></svg:svg></span></span> being a constant offset with respect to the ice melting point curve, similar to homogeneous IN. This water-activity-based description is expected to hold when the mineral surface is not altered by the presence of the solutes. On the other hand, we observe a slight enhancement in <span class="inline-formula"><i>F</i><sub>het</sub></span> in the presence of these solutes, implying that the compliance with the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="aed39b8794244ad8b5a1723f858a4f31"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00005.svg" width="28pt" height="16pt" src="acp-19-6035-2019-ie00005.png"/></svg:svg></span></span> criterion does not necessarily imply constant <span class="inline-formula"><i>F</i><sub>het</sub></span>. In contrast to the sulfates, dilute solutions of <span class="inline-formula">NH<sub>3</sub></span> or NaOH (molality <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>≥</mo><mn mathvariant="normal">5</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">4</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7da40eebe763b1e39349b261c6f19929"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00006.svg" width="52pt" height="14pt" src="acp-19-6035-2019-ie00006.png"/></svg:svg></span></span>&thinsp;mol&thinsp;kg<span class="inline-formula"><sup>−1</sup></span>) reveal <span class="inline-formula"><i>T</i><sub>het</sub></span> by 3–8&thinsp;K lower than <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M25" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>T</mi><mi mathvariant="normal">het</mi><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></msubsup><mo>(</mo><msub><mi>a</mi><mi mathvariant="normal">w</mi></msub><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="21pt" class="svg-formula" dspmath="mathimg" md5hash="7553570b3707d803d92a0e6fc123316a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00007.svg" width="49pt" height="21pt" src="acp-19-6035-2019-ie00007.png"/></svg:svg></span></span>, indicating a significant impact on the mineral surface. The lowering of <span class="inline-formula"><i>T</i><sub>het</sub></span> of quartz suspended in dilute <span class="inline-formula">NH<sub>3</sub></span> solutions is opposite to the distinct increase in <span class="inline-formula"><i>T</i><sub>het</sub></span> that we found in emulsion freezing experiments with aluminosilicates, namely feldspars, kaolinite, gibbsite and micas. We ascribe this decrease in IN activity to the increased dissolution of quartz under alkaline conditions. The defects that constitute the active sites appear to be more susceptible to dissolution and therefore disappear first on a dissolving surface.</p>
url https://www.atmos-chem-phys.net/19/6035/2019/acp-19-6035-2019.pdf
work_keys_str_mv AT akumar icenucleationactivityofsilicatesandaluminosilicatesinpurewaterandaqueoussolutionspart2quartzandamorphoussilica
AT cmarcolli icenucleationactivityofsilicatesandaluminosilicatesinpurewaterandaqueoussolutionspart2quartzandamorphoussilica
AT tpeter icenucleationactivityofsilicatesandaluminosilicatesinpurewaterandaqueoussolutionspart2quartzandamorphoussilica
_version_ 1725877171105300480
spelling doaj-86610757600c4b4287d7a8cc04a0a0ac2020-11-24T21:52:03ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-05-01196035605810.5194/acp-19-6035-2019Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silicaA. KumarC. MarcolliT. Peter<p>Divergent ice nucleation (IN) efficiencies of quartz, an important component of atmospheric mineral dust, have been reported in previous studies. We show here that quartz particles obtain their IN activity from milling and that quartz aged in water loses most of its IN efficiency relative to freshly milled quartz. Since most studies so far reported IN activities of commercial quartz dusts that were milled already by the manufacturer, IN active samples prevailed. Also, the quartz surface – much in contrast to that of feldspars – is not prone to ammonia-induced IN enhancement. In detail we investigate the influence of solutes on the IN efficiency of various silica (<span class="inline-formula">SiO<sub>2</sub></span>) particles (crystalline and amorphous) with special focus on quartz. We performed immersion freezing experiments and relate the observed variability in IN activity to the influence of milling, the aging time and to the exposure conditions since milling. Immersion freezing with silica particles suspended in pure water or aqueous solutions of <span class="inline-formula">NH<sub>3</sub></span>, <span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">NH<sub>4</sub>HSO<sub>4</sub></span>, <span class="inline-formula">Na<sub>2</sub>SO<sub>4</sub></span> and NaOH, with solute concentrations corresponding to water activities <span class="inline-formula"><i>a</i><sub>w</sub>=0.9</span>–1.0, were investigated in emulsified droplets by means of differential scanning calorimetry (DSC) and analyzed in terms of the onset temperature of the heterogeneous freezing signal <span class="inline-formula"><i>T</i><sub>het</sub></span> and the heterogeneously frozen water volume fraction <span class="inline-formula"><i>F</i><sub>het</sub></span>. Quartz particles, which originate from milling coarse samples, show a strong heterogeneous freezing peak in pure water with <span class="inline-formula"><i>T</i><sub>het</sub></span> equal to 247–251&thinsp;K. This IN activity disappears almost completely after aging for 7 months in pure water in a glass vial. During this time quartz slowly grew by incorporating silicic acid leached from the glass vial. Conversely, the synthesized amorphous silica samples show no discernable heterogeneous freezing signal unless they were milled. This implies that defects provide IN activity to silica surfaces, whereas the IN activity of a natural quartz surface is negligible, when it grew under near-equilibrium conditions. For suspensions containing milled quartz and the solutes <span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">NH<sub>4</sub>HSO<sub>4</sub></span> or <span class="inline-formula">Na<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula"><i>T</i><sub>het</sub></span> approximately follows <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>T</mi><mi mathvariant="normal">het</mi><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></msubsup><mo>(</mo><msub><mi>a</mi><mi mathvariant="normal">w</mi></msub><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="21pt" class="svg-formula" dspmath="mathimg" md5hash="1d8fcd7e9a681df856ae697114c01ebf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00001.svg" width="49pt" height="21pt" src="acp-19-6035-2019-ie00001.png"/></svg:svg></span></span>, the heterogeneous freezing onset temperatures that obey <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="95b5e80a0a3574ef6190a18aa5d5488f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00002.svg" width="28pt" height="16pt" src="acp-19-6035-2019-ie00002.png"/></svg:svg></span></span> criterion, i.e., <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>T</mi><mi mathvariant="normal">het</mi><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></msubsup><mo>(</mo><msub><mi>a</mi><mi mathvariant="normal">w</mi></msub><mo>)</mo><mo>=</mo><msub><mi>T</mi><mi mathvariant="normal">melt</mi></msub><mo>(</mo><msub><mi>a</mi><mi mathvariant="normal">w</mi></msub><mo>+</mo><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="139pt" height="21pt" class="svg-formula" dspmath="mathimg" md5hash="d43ef2ca3c6a0c7e8785a18e6ed91733"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00003.svg" width="139pt" height="21pt" src="acp-19-6035-2019-ie00003.png"/></svg:svg></span></span> with <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="24d0d048df71ca5c23f2acbe6083b91d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00004.svg" width="28pt" height="16pt" src="acp-19-6035-2019-ie00004.png"/></svg:svg></span></span> being a constant offset with respect to the ice melting point curve, similar to homogeneous IN. This water-activity-based description is expected to hold when the mineral surface is not altered by the presence of the solutes. On the other hand, we observe a slight enhancement in <span class="inline-formula"><i>F</i><sub>het</sub></span> in the presence of these solutes, implying that the compliance with the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="aed39b8794244ad8b5a1723f858a4f31"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00005.svg" width="28pt" height="16pt" src="acp-19-6035-2019-ie00005.png"/></svg:svg></span></span> criterion does not necessarily imply constant <span class="inline-formula"><i>F</i><sub>het</sub></span>. In contrast to the sulfates, dilute solutions of <span class="inline-formula">NH<sub>3</sub></span> or NaOH (molality <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>≥</mo><mn mathvariant="normal">5</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">4</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7da40eebe763b1e39349b261c6f19929"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00006.svg" width="52pt" height="14pt" src="acp-19-6035-2019-ie00006.png"/></svg:svg></span></span>&thinsp;mol&thinsp;kg<span class="inline-formula"><sup>−1</sup></span>) reveal <span class="inline-formula"><i>T</i><sub>het</sub></span> by 3–8&thinsp;K lower than <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M25" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>T</mi><mi mathvariant="normal">het</mi><mrow><mi mathvariant="normal">Δ</mi><msubsup><mi>a</mi><mi mathvariant="normal">w</mi><mi mathvariant="normal">het</mi></msubsup></mrow></msubsup><mo>(</mo><msub><mi>a</mi><mi mathvariant="normal">w</mi></msub><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="21pt" class="svg-formula" dspmath="mathimg" md5hash="7553570b3707d803d92a0e6fc123316a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-6035-2019-ie00007.svg" width="49pt" height="21pt" src="acp-19-6035-2019-ie00007.png"/></svg:svg></span></span>, indicating a significant impact on the mineral surface. The lowering of <span class="inline-formula"><i>T</i><sub>het</sub></span> of quartz suspended in dilute <span class="inline-formula">NH<sub>3</sub></span> solutions is opposite to the distinct increase in <span class="inline-formula"><i>T</i><sub>het</sub></span> that we found in emulsion freezing experiments with aluminosilicates, namely feldspars, kaolinite, gibbsite and micas. We ascribe this decrease in IN activity to the increased dissolution of quartz under alkaline conditions. The defects that constitute the active sites appear to be more susceptible to dissolution and therefore disappear first on a dissolving surface.</p>https://www.atmos-chem-phys.net/19/6035/2019/acp-19-6035-2019.pdf