Transmission Dynamics of Fractional Order Brucellosis Model Using Caputo–Fabrizio Operator

In this paper, a noninteger order Brucellosis model is developed by employing the Caputo–Fabrizio noninteger order operator. The approach of noninteger order calculus is quite new for such a biological phenomenon. We establish the existence, uniqueness, and stability conditions for the model via the...

Full description

Bibliographic Details
Main Author: Olumuyiwa James Peter
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:International Journal of Differential Equations
Online Access:http://dx.doi.org/10.1155/2020/2791380
Description
Summary:In this paper, a noninteger order Brucellosis model is developed by employing the Caputo–Fabrizio noninteger order operator. The approach of noninteger order calculus is quite new for such a biological phenomenon. We establish the existence, uniqueness, and stability conditions for the model via the fixed-point theory. The initial approachable approximate solutions are derived for the proposed model by applying the iterative Laplace transform technique. Finally, numerical simulations are conducted for the analytical results to visualize the effect of various parameters that govern the dynamics of infection, and the results are presented using plots.
ISSN:1687-9643
1687-9651